IDEAS home Printed from https://ideas.repec.org/p/sit/wpaper/17_4.html
   My bibliography  Save this paper

Modelling regional accessibility towards airports using discrete choice models: an application to the Apulian airport system

Author

Listed:
  • Bergantino, Angela Stefania
  • Capurso, Mauro
  • Hess, Stephane

Abstract

At the Regional level, accessibility is one of the key factors in airports' provision. An efficient public transport network can represent an alternative to maintaining costly and inefficient airports in the same catchment area, notwithstanding residents’ pressures to have a “local” airport. At the same time, airports can better exploit economies of scale aggregating demand. In this paper, we analyse residents' decisions regarding airport access mode in the Apulia region, in Italy, which is characterised by the presence of a system of “local” airports, of which two not fully operating. Both revealed and stated preferences data are collected and are used to estimate probabilistic models (multinomial, nested logit, and mixed logit) in order to calculate the relevant elasticities of dedicated public transit services. Moreover, we measure the effectiveness of specific policies/actions aimed at generating a modal shift from private modes (car and taxi) to public transport, rationalising mobility towards the existing airports.

Suggested Citation

  • Bergantino, Angela Stefania & Capurso, Mauro & Hess, Stephane, 2017. "Modelling regional accessibility towards airports using discrete choice models: an application to the Apulian airport system," Working Papers 17_4, SIET Società Italiana di Economia dei Trasporti e della Logistica.
  • Handle: RePEc:sit:wpaper:17_4
    as

    Download full text from publisher

    File URL: http://www.sietitalia.org/wpsiet/Bergantino_Capurso_Hess_Airport_Accessibility_WP_SIET_2017.pdf
    File Function: First version,
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsamboulas, D. & Evmorfopoulos, A.P. & Moraiti, P., 2012. "Modeling airport employees commuting mode choice," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 74-77.
    2. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    3. Eric Pels & Peter Nijkamp & Piet Rietveld, 2001. "Airport and Airline Choice in a Multiple Airport Region: An Empirical Analysis for the San Francisco Bay Area," Regional Studies, Taylor & Francis Journals, vol. 35(1), pages 1-9.
    4. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    5. Psaraki, Voula & Abacoumkin, Costas, 2002. "Access mode choice for relocated airports: the new Athens International Airport," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 89-98.
    6. Akar, Gulsah, 2013. "Ground access to airports, case study: Port Columbus International Airport," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 25-31.
    7. Tsamboulas, Dimitrios A. & Nikoleris, Anastasios, 2008. "Passengers' willingness to pay for airport ground access time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1274-1282, December.
    8. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    9. Ortúzar, Juan de Dios & Simonetti, Carolina, 2008. "Modelling the demand for medium distance air travel with the mixed data estimation method," Journal of Air Transport Management, Elsevier, vol. 14(6), pages 297-303.
    10. Jou, Rong-Chang & Hensher, David A. & Hsu, Tzu-Lan, 2011. "Airport ground access mode choice behavior after the introduction of a new mode: A case study of Taoyuan International Airport in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(3), pages 371-381, May.
    11. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    12. Chang, Yu-Chun, 2013. "Factors affecting airport access mode choice for elderly air passengers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 57(C), pages 105-112.
    13. Espino, Raquel & de Dios Ortúzar, Juan & Román, Concepción, 2007. "Understanding suburban travel demand: Flexible modelling with revealed and stated choice data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 899-912, December.
    14. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    15. Alhussein, Saad N., 2011. "Analysis of ground access modes choice King Khaled International Airport, Riyadh, Saudi Arabia," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1361-1367.
    16. Hess, Stephane & Polak, John W., 2006. "Exploring the potential for cross-nesting structures in airport-choice analysis: A case-study of the Greater London area," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 63-81, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bergantino, Angela Stefania & Capurso, Mauro & Hess, Stephane, 2020. "Modelling regional accessibility to airports using discrete choice models: An application to a system of regional airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 855-871.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantino, Angela Stefania & Madio, Leonardo, 2017. "High-speed rail, inter-modal substitution and willingness-to-pay. A stated preference analysis for the ‘Bari-Rome’," Working Papers 17_6, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    2. Bergantino, Angela Stefania & Capurso, Mauro & Hess, Stephane, 2020. "Modelling regional accessibility to airports using discrete choice models: An application to a system of regional airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 855-871.
    3. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    4. Wang, Zi-Jia & Jia, Hui-Hui & Dai, Fangzhou & Diao, Mi, 2022. "Understanding the ground access and airport choice behavior of air passengers using transit payment transaction data," Transport Policy, Elsevier, vol. 127(C), pages 179-190.
    5. Yazdanpanah, Mahdi & Hosseinlou, Mansour Hadji, 2016. "The influence of personality traits on airport public transport access mode choice: A hybrid latent class choice modeling approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 147-163.
    6. Yang, Chih-Wen & Liao, Pei-Han, 2016. "Modeling the joint choice of access modes and flight routes with parallel structure and random heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 19-31.
    7. Aleksandra Colovic & Salvatore Gabriele Pilone & Katarina Kukić & Milica Kalić & Slavica Dožić & Danica Babić & Michele Ottomanelli, 2022. "Airport Access Mode Choice: Analysis of Passengers’ Behavior in European Countries," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    8. Silva, Henrique Guilherme Montes & Guterres, Marcelo Xavier & Bandeira, Michelle Carvalho Galvão da Silva Pinto & Alves, Cláudio Jorge Pinto & Sonáglio, Cláudio Abano, 2022. "The role of security in passengers' airport ground access choices: A statistical evaluation," Journal of Air Transport Management, Elsevier, vol. 103(C).
    9. Gunay, Gurkan & Gokasar, Ilgin, 2021. "Market segmentation analysis for airport access mode choice modeling with mixed logit," Journal of Air Transport Management, Elsevier, vol. 91(C).
    10. Hess, Stephane, 2007. "Posterior analysis of random taste coefficients in air travel behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 203-212.
    11. Escobari, Diego, 2017. "Airport, airline and departure time choice and substitution patterns: An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 198-210.
    12. Qin, Huanmei & Gao, Jianqiang & Zhang, Guohui & Chen, Yanyan & Wu, Songhua, 2017. "Nested logit model formation to analyze airport parking behavior based on stated preference survey studies," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 164-175.
    13. Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato & Deforza, Paolo, 2019. "Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport," Transport Policy, Elsevier, vol. 73(C), pages 113-124.
    14. Akar, Gulsah, 2013. "Ground access to airports, case study: Port Columbus International Airport," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 25-31.
    15. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2015. "The impact of low-cost carriers on airport choice in the US: A case study of the Washington–Baltimore region," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 141-157.
    16. Paliska, Dejan & Drobne, Samo & Borruso, Giuseppe & Gardina, Massimo & Fabjan, Daša, 2016. "Passengers' airport choice and airports' catchment area analysis in cross-border Upper Adriatic multi-airport region," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 143-154.
    17. Gokasar, Ilgin & Gunay, Gurkan, 2017. "Mode choice behavior modeling of ground access to airports: A case study in Istanbul, Turkey," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 1-7.
    18. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    19. Laurino, Antonio & Beria, Paolo & Debernardi, Andrea & Ferrara, Emanuele, 2019. "Accessibility to Italian remote regions: Comparison among different transport alternatives," Transport Policy, Elsevier, vol. 83(C), pages 127-138.
    20. Wadud, Zia, 2020. "An examination of the effects of ride-hailing services on airport parking demand," Journal of Air Transport Management, Elsevier, vol. 84(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sit:wpaper:17_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Edoardo Marcucci (email available below). General contact details of provider: https://edirc.repec.org/data/siettea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.