Advanced Search
MyIDEAS: Login

Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation

Contents:

Author Info

  • A. Hurn
  • J. Jeisman
  • K. Lindsay

Abstract

Many stochastic differential equations (SDEs) do not have readily available closed-form expressions for their transitional probability density functions (PDFs). As a result, a large number of competing estimation approaches have been proposed in order to obtain maximum-likelihood estimates of their parameters. Arguably the most straightforward of these is one in which the required estimates of the transitional PDF are obtained by numerical solution of the Fokker-Planck(or forward-Kolmogorov) partial differential equation. Despite the fact that this method produces accurate estimates and is completely generic, it has not proved popular in the applied literature. Perhaps this is attributable to the fact that this approach requires repeated solution of a parabolic partial differential equation to obtain the transitional PDF and is therefore computationally quite expensive. In this paper, three avenues for improving the reliability and speed of this estimation method are introduced and explored in the context of estimating the parameters of the popular Cox-Ingersoll-Ross and Ornstein-Uhlenbeck models. The recommended algorithm that emerges from this investigation is seen to offer substantial gains in reliability and computational time.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ncer.edu.au/papers/documents/WpNo9Feb07.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Centre for Econometric Research in its series NCER Working Paper Series with number 9.

as in new window
Length:
Date of creation: 27 Feb 2007
Date of revision:
Handle: RePEc:qut:auncer:2007-3

Contact details of provider:
Phone: 07 3138 5066
Fax: 07 3138 1500
Web page: http://www.ncer.edu.au
More information through EDIRC

Related research

Keywords: stochastic di®erential equations; maximum likelihood; ¯nite di®erence; ¯nite element; cumulative;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hurn, A.S. & Lindsay, K.A., 1999. "Estimating the parameters of stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 373-384.
  2. Sundaresan, S.M., 2000. "Continuous-Time Methods in Finance: A Review and an Assessment," Papers 00-03, Columbia - Graduate School of Business.
  3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  4. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  5. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
  6. Suresh M. Sundaresan, 2000. "Continuous-Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, 08.
  7. Neil Shephard & Ola Elerian & Siddhartha Chib, 1998. "Likelihood inference for discretely observed non-linear diffusions," Economics Series Working Papers 1998-W10, University of Oxford, Department of Economics.
  8. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(3), pages 390-455.
  9. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  10. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
  11. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
  12. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
  13. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, 01.
  14. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-27, July.
  15. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  16. Michael Sørensen, 2000. "Prediction-based estimating functions," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 123-147.
  17. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
  18. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
  19. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-91, April.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2007-3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (School of Economics and Finance) The email address of this maintainer does not seem to be valid anymore. Please ask School of Economics and Finance to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.