IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/79438.html
   My bibliography  Save this paper

Modelling a Dutch Pension Fund’s Capital Requirement for Longevity Risk

Author

Listed:
  • Polman, Fabian M.
  • Krijgsman, Cees
  • Dajani, Karma
  • Hemminga, Marcus A.

Abstract

Longevity risk is the risk arising from uncertainty in the prediction of future mortality. This risk must be faced by pension funds. The legislation for Dutch pension funds prescribes that the pension funds need to keep in reserve a certain level of capital for this risk. De Nederlandsche Bank (DNB), the regulator of the legislation, suggests a method for calculating this capital requirement. In this paper an alternative method is developed, that provides a better insight in the current risk. Moreover, it turns out that the resulting capital requirement from our method is less than half of the capital requirement calculated using the method suggested by DNB.

Suggested Citation

  • Polman, Fabian M. & Krijgsman, Cees & Dajani, Karma & Hemminga, Marcus A., 2017. "Modelling a Dutch Pension Fund’s Capital Requirement for Longevity Risk," MPRA Paper 79438, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:79438
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/79438/9/MPRA_paper_79438.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    2. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    2. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    3. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    4. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    5. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    6. French, Declan, 2014. "International mortality modelling—An economic perspective," Economics Letters, Elsevier, vol. 122(2), pages 182-186.
    7. Schinzinger, Edo & Denuit, Michel M. & Christiansen, Marcus C., 2016. "A multivariate evolutionary credibility model for mortality improvement rates," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 70-81.
    8. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    9. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    10. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    11. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    12. Jens Robben & Katrien Antonio & Sander Devriendt, 2022. "Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model," Risks, MDPI, vol. 10(2), pages 1-33, January.
    13. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    14. Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
    15. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    16. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    17. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    18. Choi, Yongok, 2016. "Longevity Risk in Korea," KDI Focus 69, Korea Development Institute (KDI).
    19. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    20. Søren Kjærgaard & Vladimir Canudas-Romo, 2017. "Potential support ratios: Cohort versus period perspectives," Population Studies, Taylor & Francis Journals, vol. 71(2), pages 171-186, May.

    More about this item

    Keywords

    Longevity risk; capital requirement for longevity risk; Dutch pension fund; stochastic mortality; Monte Carlo simulations;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • H55 - Public Economics - - National Government Expenditures and Related Policies - - - Social Security and Public Pensions
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:79438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.