Advanced Search
MyIDEAS: Login to save this paper or follow this series

On the calculation of price sensitivities with jump-diffusion structure

Contents:

Author Info

  • El-Khatib, Youssef
  • Abdulnasser, Hatemi-J

Abstract

We provide a new theoretical framework for estimating the price sensitivities of a trading position with regard to five underlying factors in jump-diffusion models using jump times Poisson noise. The proposition that results in a general solution is mathematically proved. The general solution that this paper offers can be applied to compute each price sensitivity. The suggested modeling approach deals with the shortcomings of the Black-Scholes formula such as the jumps that can occur at any time in the stock's price. Via the Malliavin calculus we show that differentiation can be transformed into integration, which makes the price sensitivities operational and more efficient. Thus, the solution that is provided in this paper is expected to make decision making under uncertainty more efficient.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/30596/
File Function: original version
Download Restriction: no

File URL: http://mpra.ub.uni-muenchen.de/45328/
File Function: revised version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 30596.

as in new window
Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:pra:mprapa:30596

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Malliavin Calculus; Asset Pricing; Price Sensitivity; Jump-diffusion Models; Jump Times Poisson Noise; European Options.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, Elsevier, vol. 116(1), pages 101-129, January.
  2. Jan Ubøe & Bernt Øksendal & Knut Aase & Nicolas Privault, 2000. "White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance," Finance and Stochastics, Springer, vol. 4(4), pages 465-496.
  3. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
  4. Youssef El-Khatib & Nicolas Privault, 2004. "Computations of Greeks in a market with jumps via the Malliavin calculus," Finance and Stochastics, Springer, vol. 8(2), pages 161-179, 05.
  5. Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30596. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.