Advanced Search
MyIDEAS: Login to save this paper or follow this series

Instrumental variables interpretations of FIML and nonlinear FIML

Contents:

Author Info

  • Calzolari, Giorgio
  • Sampoli, Letizia

Abstract

FIML estimates of a simultaneous equation econometric model can be obtained by iterating to convergence an instrumental variables formula that is perfectly consistent with the intuitive textbook-type interpretation of efficient instruments: instruments for an equation must be uncorrelated with the error term of the equation, but at the same time must have the highest correlation with the explanatory variables. However, if our purpose is to obtain FIML from iterating to convergence some full information instrumental variables, the intuitive textbook-type interpretation of the efficient instruments is not necessarily helpful, and can be too restrictive. The purpose of this paper is to show that, in the full information framework, there is a much wider flexibility in the choice of the instruments. Against intuition, instruments may be not purged enough of correlation with the error term: for example, the instruments for the endogenous variables or functions of endogenous variables included in one equation do not need to be purged of the residuals of equations that are correlated with the given one. Viceversa, instruments can be purged too much: for example, if there are zero covariance restrictions, instruments may be purged also of the estimated residuals of equations uncorrelated with the given one.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/29024/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 29024.

as in new window
Length:
Date of creation: 04 Sep 1989
Date of revision:
Handle: RePEc:pra:mprapa:29024

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Econometric models; simultaneous equations; full information maximum likelihood; iterative instrumental variables;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jerry A. Hausman & Whitney K. Newey & William E. Taylor, 1985. "Efficient Estimation and Identification of Simultaneous Equation Models with Covariance Restrictions," Working papers, Massachusetts Institute of Technology (MIT), Department of Economics 369, Massachusetts Institute of Technology (MIT), Department of Economics.
  2. Hausman, Jerry A., 1983. "Specification and estimation of simultaneous equation models," Handbook of Econometrics, Elsevier, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 7, pages 391-448 Elsevier.
  3. Jerry A. Hausman, 1974. "Full Information Instrumental Variables Estimation of Simultaneous Equations Systems," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 91-102 National Bureau of Economic Research, Inc.
  4. James M. Brundy & Dale W. Jorgenson, 1971. "Efficient estimation of simultaneous equations by instrumental variables," Working Papers in Applied Economic Theory, Federal Reserve Bank of San Francisco 3, Federal Reserve Bank of San Francisco.
  5. Hausman, Jerry A, 1975. "An Instrumental Variable Approach to Full Information Estimators for Linear and Certain Nonlinear Econometric Models," Econometrica, Econometric Society, Econometric Society, vol. 43(4), pages 727-38, July.
  6. Brundy, James M & Jorgenson, Dale W, 1971. "Efficient Estimation of Simultaneous Equations by Instrumental Variables," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 207-24, August.
  7. Dagenais, Marcel G, 1978. "The Computation of FIML Estimates as Iterative Generalized Least Squares Estimates in Linear and Nonlinear Simultaneous Equations Models," Econometrica, Econometric Society, Econometric Society, vol. 46(6), pages 1351-62, November.
  8. Calzolari, Giorgio & Panattoni, Lorenzo & Weihs, Claus, 1987. "Computational efficiency of FIML estimation," Journal of Econometrics, Elsevier, Elsevier, vol. 36(3), pages 299-310, November.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:29024. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.