IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/105614.html
   My bibliography  Save this paper

On Bayesian integration in sensorimotor learning: Another look at Kording and Wolpert (2004)

Author

Listed:
  • Duffy, Sean
  • Igan, Deniz
  • Pinheiro, Marcelo
  • Smith, John

Abstract

Kording and Wolpert (2004), hereafter referred to as KW, describe an experiment where subjects engaged in a repeated task entailing movements of their finger. Subjects strove for accuracy in the stochastic environment and, on some trials, received mid-trial and post-trial feedback. KW claims that subjects learned the underlying stochastic distribution from the post-trial feedback of previous trials. KW also claims that subjects regarded mid-trial feedback that had a smaller visual size as more precise and they were therefore more sensitive to such mid-trial feedback. KW concludes that the observations are consistent with optimal Bayesian learning. Indeed, under mild assumptions, it is well-known that Bayesian learners will have posterior beliefs that converge to the true distribution. We note that the KW analysis is based on data that had been averaged across important trial-specific details and averaged across trials. Averaging data disregards possibly valuable information and its dangers have been known for some time. Notably, the KW analysis does not exclude non-Bayesian explanations. When we analyze the trial-level KW data, we find that subjects were less--not more--sensitive to mid-trial feedback when it had a smaller visual size. Our trial-level analysis also suggests a recency bias, rather than evidence that the subjects learned the stochastic distribution. In other words, we do not find that the observations are consistent with optimal Bayesian learning. In the KW dataset, it seems that evidence for optimal Bayesian learning is a statistical artifact of analyzing averaged data.

Suggested Citation

  • Duffy, Sean & Igan, Deniz & Pinheiro, Marcelo & Smith, John, 2021. "On Bayesian integration in sensorimotor learning: Another look at Kording and Wolpert (2004)," MPRA Paper 105614, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:105614
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/105614/1/MPRA_paper_105614.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    2. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    4. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    6. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    7. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    9. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    10. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    11. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    12. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    13. Michael Bergin & Kylie Tucker & Bill Vicenzino & Paul W Hodges, 2021. "“Taking action” to reduce pain—Has interpretation of the motor adaptation to pain been too simplistic?," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
    14. Nils Neupärtl & Fabian Tatai & Constantin A Rothkopf, 2020. "Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-26, October.
    15. Salvador Dura-Bernal & Thomas Wennekers & Susan L Denham, 2012. "Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-25, November.
    16. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    17. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    18. Siqueira, Jose Ribamar & ter Horst, Enrique & Molina, German & Losada, Mauricio & Mateus, Marelby Amado, 2020. "A Bayesian examination of the relationship of internal and external touchpoints in the customer experience process across various service environments," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    19. Tyler Cluff & Ramesh Balasubramaniam, 2009. "Motor Learning Characterized by Changing Lévy Distributions," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-7, June.
    20. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.

    More about this item

    Keywords

    data reanalysis; memory; Bayesian judgments;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:105614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.