IDEAS home Printed from https://ideas.repec.org/p/pia/wpaper/23-2006.html
   My bibliography  Save this paper

Subset selection in dimension reduction methods

Author

Listed:
  • Luca Scrucca

Abstract

Dimension reduction methods play an important role in multivariate statistical analysis, in particular with high-dimensional data. Linear methods can be seen as a linear mapping from the original feature space to a dimension reduction subspace. The aim is to transform the data so that the essential structure is more easily understood. However, highly correlated variables provide redundant information, whereas some other feature may be irrelevant, and we would like to identify and then discard both of them while pursuing dimension reduction. Here we propose a greedy search algorithm, which avoids the search over all possible subsets, for ranking subsets of variables based on their ability to explain variation in the dimension reduction variates.

Suggested Citation

  • Luca Scrucca, 2006. "Subset selection in dimension reduction methods," Quaderni del Dipartimento di Economia, Finanza e Statistica 23/2006, Università di Perugia, Dipartimento Economia.
  • Handle: RePEc:pia:wpaper:23/2006
    as

    Download full text from publisher

    File URL: http://www2.ec.unipg.it/quaderni/quaderno23.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. K. Vines, 2000. "Simple principal components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 441-451.
    2. J. N. R. Jeffers, 1967. "Two Case Studies in the Application of Principal Component Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(3), pages 225-236, November.
    3. I. T. Jolliffe, 1973. "Discarding Variables in a Principal Component Analysis. Ii: Real Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(1), pages 21-31, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Cumming, J.A. & Wooff, D.A., 2007. "Dimension reduction via principal variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 550-565, September.
    3. Sabatier, Robert & Reynès, Christelle, 2008. "Extensions of simple component analysis and simple linear discriminant analysis using genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4779-4789, June.
    4. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    5. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    6. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    7. Fernandez-Haddad, Zaira & Quiroga, Sonia, 2011. "Adaptation Of Mediterranean Crops To Water Pressure In The Ebro Basin: A Water Efficiency Index," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114358, European Association of Agricultural Economists.
    8. Zaijun Li & Jianquan Cheng & Qiyan Wu, 2016. "Analyzing regional economic development patterns in a fast developing province of China through geographically weighted principal component analysis," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 233-245, October.
    9. Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    10. Jinhak Kim & Mohit Tawarmalani & Jean-Philippe P. Richard, 2019. "Convexification of Permutation-Invariant Sets," Purdue University Economics Working Papers 1315, Purdue University, Department of Economics.
    11. Gianluca Gucciardi, 2022. "Measuring the relative development and integration of EU countries’ capital markets using composite indicators and cluster analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(4), pages 1043-1083, November.
    12. Choulakian, V., 2001. "Robust Q-mode principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 135-150, August.
    13. Norman R. Swanson, 2016. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 348-353, July.
    14. Carrizosa, Emilio & Guerrero, Vanesa, 2014. "Biobjective sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 151-159.
    15. Elsy Garnica Olmos, 1996. "Principal component analysis of household budget," Economía, Instituto de Investigaciones Económicas y Sociales (IIES). Facultad de Ciencias Económicas y Sociales. Universidad de Los Andes. Mérida, Venezuela, vol. 21(11), pages 55-90, January-D.
    16. Ronald Gunderson & Pin Ng, 2006. "Summarizing the Effect of a Wide Array of Amenity Measures into Simple Components," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 79(2), pages 313-335, November.
    17. Bauer, Jan O. & Drabant, Bernhard, 2021. "Principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    18. E. Raffinetti & I. Romeo, 2015. "Dealing with the biased effects issue when handling huge datasets: the case of INVALSI data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2554-2570, December.
    19. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    20. Hugh Chipman & Hong Gu, 2005. "Interpretable dimension reduction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(9), pages 969-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pia:wpaper:23/2006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ubaldo Pizzoli (email available below). General contact details of provider: https://edirc.repec.org/data/deperit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.