IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/20853.html
   My bibliography  Save this paper

Knowledge, Human Capital and Economic Development: Evidence from the British Industrial Revolution, 1750-1930

Author

Listed:
  • B. Zorina Khan

Abstract

Endogenous growth models raise fundamental questions about the nature of human creativity, and the sorts of resources, skills, and knowledge inputs that shift the frontier of technology and production possibilities. Many argue that the nature of early British industrialization supports the thesis that economic advances depend on specialized scientific training or the acquisition of costly human capital. This paper examines the contributions of different types of knowledge to British industrialization, by assessing the backgrounds, education and inventive activity of the major contributors to technological advances in Britain during the crucial period between 1750 and 1930. The results indicate that scientists, engineers or technicians were not well-represented among the British great inventors until very late in the nineteenth century. Instead, important discoveries and British industrial advances were achieved by individuals who exercised commonplace skills and entrepreneurial abilities to resolve perceived industrial problems. For developing countries today, the implications are that costly investments in specialized human capital resources might be less important than incentives for creativity, flexibility, and the ability to make incremental adjustments that can transform existing technologies into inventions that are appropriate for prevailing domestic conditions.

Suggested Citation

  • B. Zorina Khan, 2015. "Knowledge, Human Capital and Economic Development: Evidence from the British Industrial Revolution, 1750-1930," NBER Working Papers 20853, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20853
    Note: DAE DEV PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w20853.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Crafts, 2004. "Steam as a general purpose technology: A growth accounting perspective," Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
    2. R. A. Buchanan, 1985. "Institutional Proliferation in the British Engineering Profession, 1847–1914," Economic History Review, Economic History Society, vol. 38(1), pages 42-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakob B. Madsen & Fabrice Murtin, 2017. "British economic growth since 1270: the role of education," Journal of Economic Growth, Springer, vol. 22(3), pages 229-272, September.
    2. Alessandro Nuvolari & Michelangelo Vasta, 2017. "The geography of innovation in Italy, 1861–1913: evidence from patent data," European Review of Economic History, European Historical Economics Society, vol. 21(3), pages 326-356.
    3. B. Zorina Khan, 2017. "Prestige and Profit: The Royal Society of Arts and Incentives for Innovation, 1750-1850," NBER Working Papers 23042, National Bureau of Economic Research, Inc.
    4. James Foreman‐Peck & Peng Zhou, 2018. "Late marriage as a contributor to the industrial revolution in England," Economic History Review, Economic History Society, vol. 71(4), pages 1073-1099, November.
    5. Ahmed S. Rahman, 2017. "Rise of the Machines Redux – Education, Technological Transition and Long-run Growth," Departmental Working Papers 61, United States Naval Academy Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svante Prado, 2014. "Yeast or mushrooms? Productivity patterns across Swedish manufacturing industries, 1869–1912," Economic History Review, Economic History Society, vol. 67(2), pages 382-408, May.
    2. Gilbert Cette & Yusuf Kocoglu & Jacques Mairesse, 2009. "Productivity Growth and Levels in France, Japan, the United Kingdom and the United States in the Twentieth Century," NBER Working Papers 15577, National Bureau of Economic Research, Inc.
    3. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    5. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    6. Nicholas Oulton, 2013. "Medium and long run prospects for UK growth in the aftermath of the financial crisis," Discussion Papers 1307, Centre for Macroeconomics (CFM).
    7. Marini, Giovanni & Pannone, Andrea, 2007. "Capital and capacity utilization revisited: A theory for ICT-assisted production systems," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 231-248, June.
    8. Raphael Franck & Oded Galor, 2018. "Flowers of Evil? Industrialization and Long Run Development," Working Papers 2018-7, Brown University, Department of Economics.
    9. Harald Edquist & Magnus Henrekson, 2006. "Technological Breakthroughs and Productivity Growth," Research in Economic History, in: Research in Economic History, pages 1-53, Emerald Group Publishing Limited.
    10. Broadberry Stephen, 2012. "Recent Developments in the Theory of Very Long Run Growth: A Historical Appraisal," Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook, De Gruyter, vol. 53(1), pages 277-306, May.
    11. Morgan Kelly & Joel Mokyr & Cormac Ó Gráda, 2023. "The Mechanics of the Industrial Revolution," Journal of Political Economy, University of Chicago Press, vol. 131(1), pages 59-94.
    12. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    13. Alex W. Chernoff, 2021. "Firm heterogeneity, technology adoption and the spatial distribution of population: Theory and measurement," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(2), pages 475-521, May.
    14. Kim, Sukkoo, 2005. "Industrialization and urbanization: Did the steam engine contribute to the growth of cities in the United States?," Explorations in Economic History, Elsevier, vol. 42(4), pages 586-598, October.
    15. Diane Coyle, 2021. "The idea of productivity," Working Papers 003, The Productivity Institute.
    16. Crafts, Nicholas & Mills, Terence C., 2004. "Was 19th century British growth steam-powered?: the climacteric revisited," Explorations in Economic History, Elsevier, vol. 41(2), pages 156-171, April.
    17. Bekhtiar, Karim & Bittschi, Benjamin & Sellner, Richard, 2021. "Robots at Work? Pitfalls of Industry Level Data," IHS Working Paper Series 30, Institute for Advanced Studies.
    18. Nicholas Crafts, 2022. "Slow real wage growth during the Industrial Revolution: productivity paradox or pro-rich growth? [Engels’ pause: technical change, capital accumulation, and inequality in the British industrial rev," Oxford Economic Papers, Oxford University Press, vol. 74(1), pages 1-13.
    19. Richard Green and Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Koutroumpis, Pantelis & Leiponen, Aija & Thomas, Llewellyn D W, 2017. "Invention Machines: How Control Instruments and Information Technologies Drove Global Technologigal Progress over a Century of Invention," ETLA Working Papers 52, The Research Institute of the Finnish Economy.

    More about this item

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • N13 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - Europe: Pre-1913
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.