Advanced Search
MyIDEAS: Login

Dynamic Optimization with a Nonsmooth, Nonconvex Technology: The Case of a Linear Objective Function

Contents:

Author Info

  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

  • Santanu Roy

    (Department of Economics, Southern Methodist University, USA)

Abstract

This paper studies a one-sector optimal growth model with linear utility in which the production function is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for a general form of irreversible investment. We show that every optimal path either converges to zero or reaches a positive steady state in finite time (and possibly jumps among different steady states afterwards). We establish conditions for extinction (convergence to zero), survival (boundedness away from zero), and the existence of a minimum safe standard of conservation. They extend the conditions known for the case of S-shaped production functions to a much large class of technologies. We also show that as the discount factor approaches one, optimal paths converge to a small neighborhood of the golden rule capital stock.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp161.pdf
File Function: First version, 2004
Download Restriction: no

Bibliographic Info

Paper provided by Research Institute for Economics & Business Administration, Kobe University in its series Discussion Paper Series with number 161.

as in new window
Length: 21 pages
Date of creation: Jul 2004
Date of revision:
Handle: RePEc:kob:dpaper:161

Contact details of provider:
Postal: 2-1 Rokkodai, Nada, Kobe 657-8501 JAPAN
Phone: +81-(0)78 803 7036
Fax: +81-(0)78 803 7059
Web page: http://www.rieb.kobe-u.ac.jp/index-e.html
More information through EDIRC

Related research

Keywords: Nonconvex; nonsmooth; and discontinuous technology; Extinction; Survival; Turnpike; Linear utility;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Spence, A Michael & Starrett, David, 1975. "Most Rapid Approach Paths in Accumulation Problems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 16(2), pages 388-403, June.
  2. Dechert, W. Davis & Nishimura, Kazuo, 1983. "A complete characterization of optimal growth paths in an aggregated model with a non-concave production function," Journal of Economic Theory, Elsevier, vol. 31(2), pages 332-354, December.
  3. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
  4. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-39, May.
  5. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
  6. Azariadis, Costas & Drazen, Allan, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, MIT Press, vol. 105(2), pages 501-26, May.
  7. Kamihigashi, Takashi, 1999. "Chaotic dynamics in quasi-static systems: theory and applications1," Journal of Mathematical Economics, Elsevier, vol. 31(2), pages 183-214, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
  2. Serena Brianzoni & Cristiana Mammana & Elisabetta Michetti, 2012. "Local and Global Dynamics in a Discrete Time Growth Model with Nonconcave Production Function," Working Papers 70-2012, Macerata University, Department of Finance and Economic Sciences, revised Dec 2012.
  3. La Grandville, O. de, 2014. "Optimal growth theory: Challenging problems and suggested answers," Economic Modelling, Elsevier, vol. 36(C), pages 608-611.
  4. Takashi Kamihigashi, 2013. "Elementary Results on Solutions to the Bellman Equation of Dynamic Programming:Existence, Uniqueness, and Convergence," Discussion Paper Series DP2013-35, Research Institute for Economics & Business Administration, Kobe University, revised Dec 2013.
  5. Takashi Kamihigashi & Santanu Roy, 2005. "A nonsmooth, nonconvex model of optimal growth," Discussion Paper Series 173, Research Institute for Economics & Business Administration, Kobe University.
  6. Takashi Kamihigashi & Taiji Furusawa, 2007. "Global Dynamics in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 210, Research Institute for Economics & Business Administration, Kobe University.
  7. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer, vol. 40(3), pages 457-471, September.
  8. Takashi Kamihigashi & Taiji Furusawa, 2006. "Immediately Reactive Equilibria in Infinitely Repeated Games with Additively Separable Continuous Payoffs," Discussion Paper Series 199, Research Institute for Economics & Business Administration, Kobe University.
  9. repec:hal:journl:halshs-00267100 is not listed on IDEAS

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:161. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.