Advanced Search
MyIDEAS: Login to save this paper or follow this series

Penalized estimation of high-dimensional models under a generalized sparsity condition

Contents:

Author Info

  • Joel Horowitz

    ()
    (Institute for Fiscal Studies and Northwestern University)

  • Jian Huang
Registered author(s):

    Abstract

    We consider estimation of a linear or nonparametric additive model in which a few coefficients or additive components are “large†and may be objects of substantive interest, whereas others are “small†but not necessarily zero. The number of small coefficients or additive components may exceed the sample size. It is not known which coefficients or components are large and which are small. The large coefficients or additive components can be estimated with a smaller mean-square error or integrated mean-square error if the small ones can be identified and the covariates associated with them dropped from the model. We give conditions under which several penalized least squares procedures distinguish correctly between large and small coefficients or additive components with probability approaching 1 as the sample size increases. The results of Monte Carlo experiments and an empirical example illustrate the benefits of our methods.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cemmap.ac.uk/wps/cwp171212.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP17/12.

    as in new window
    Length:
    Date of creation: Jul 2012
    Date of revision:
    Handle: RePEc:ifs:cemmap:17/12

    Contact details of provider:
    Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Phone: (+44) 020 7291 4800
    Fax: (+44) 020 7323 4780
    Email:
    Web page: http://cemmap.ifs.org.uk
    More information through EDIRC

    Order Information:
    Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Email:

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:17/12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.