IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp673.html
   My bibliography  Save this paper

Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games

Author

Listed:
  • Yannai A. Gonczarowski
  • Moshe Tennenholtz

Abstract

Drawing intuition from a (physical) hydraulic system, we present a novel framework, constructively showing the existence of a strong Nash equilibrium in resource selection games with nonatomic players, the coincidence of strong equilibria and Nash equilibria in such games, and the invariance of the cost of each given resource across all Nash equilibria. Our proofs allow for explicit calculation of Nash equilibrium and for explicit and direct calculation of the resulting (invariant) costs of resources, and do not hinge on any fixed-point theorem, on the Minimax theorem or any equivalent result, on the existence of a potential, or on linear programming. A generalization of resource selection games, called resource selection games with I.D.-dependent weighting, is defined, and the results are extended to this family, showing that while resource costs are no longer invariant across Nash equilibria in games of this family, they are nonetheless invariant across all strong Nash equilibria, drawing a novel fundamental connection between group deviation and I.D.-congestion. A natural application of the resulting machinery to a large class of constraint-satisfaction problems is also described.

Suggested Citation

  • Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games," Discussion Paper Series dp673, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp673
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp673.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    2. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Noncooperative Market Allocation and the Formation of Downtown," Discussion Paper Series dp663, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    3. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    4. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    5. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.
    6. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    2. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Noncooperative Market Allocation and the Formation of Downtown," Discussion Paper Series dp663, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    3. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    4. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    5. Marco Scarsini & Tristan Tomala, 2012. "Repeated congestion games with bounded rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 651-669, August.
    6. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    7. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    8. Kukushkin, Nikolai S., 2014. "Rosenthal's potential and a discrete version of the Debreu--Gorman Theorem," MPRA Paper 54171, University Library of Munich, Germany.
    9. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    10. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    11. Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
    12. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    13. Andelman, Nir & Feldman, Michal & Mansour, Yishay, 2009. "Strong price of anarchy," Games and Economic Behavior, Elsevier, vol. 65(2), pages 289-317, March.
    14. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.
    15. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    16. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    17. Arnold, Tone & Wooders, Myrna, 2002. "Dynamic Club Formation with Coordination," Economic Research Papers 269414, University of Warwick - Department of Economics.
    18. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    19. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    20. Xujin Chen & Zhuo Diao & Xiaodong Hu, 2022. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1705-1723, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.