IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03191437.html
   My bibliography  Save this paper

Accuracies of Model Risks in Finance using Machine Learning

Author

Listed:
  • Berthine Nyunga Mpinda
  • Jules Sadefo-Kamdem

    (MRE - Montpellier Recherche en Economie - UM - Université de Montpellier)

  • Salomey Osei
  • Jeremiah Fadugba

Abstract

There is increasing interest in using Artificial Intelligence (AI) and machine learning techniques to enhance risk management from credit risk to operational risk. Moreover, recent applications of machine learning models in risk management have proved efficient. That notwithstanding, while using machine learning techniques can have considerable benefits, they also can introduce risk of their own, when the models are wrong. Therefore, machine learning models must be tested and validated before they can be used. The aim of this work is to explore some existing machine learning models for operational risk, by comparing their accuracies. Because a model should add value and reduce risk, particular attention is paid on how to evaluate it's performance, robustness and limitations. After using the existing machine learning and deep learning methods for operational risk, particularly on risk of fraud, we compared accuracies of these models based on the following metrics: accuracy, F1-Score, AUROC curve and precision. We equally used quantitative validation such as Back-testing and Stress-testing for performance analysis of the model on historical data, and the sensibility of the model for extreme but plausible scenarios like the Covid-19 period. Our results show that, Logistic regression out performs all deep learning models considered for fraud detection

Suggested Citation

  • Berthine Nyunga Mpinda & Jules Sadefo-Kamdem & Salomey Osei & Jeremiah Fadugba, 2021. "Accuracies of Model Risks in Finance using Machine Learning," Working Papers hal-03191437, HAL.
  • Handle: RePEc:hal:wpaper:hal-03191437
    Note: View the original document on HAL open archive server: https://hal.umontpellier.fr/hal-03191437
    as

    Download full text from publisher

    File URL: https://hal.umontpellier.fr/hal-03191437/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evert Wipplinger, 2007. "Philippe Jorion: Value at Risk – The New Benchmark for Managing Financial Risk," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 21(3), pages 397-398, September.
    2. Linwei Hu & Jie Chen & Joel Vaughan & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2020. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," Papers 2008.04059, arXiv.org.
    3. Simona Galletta & Sebastiano Mazzù, 2019. "Liquidity Risk Drivers and Bank Business Models," Risks, MDPI, vol. 7(3), pages 1-18, August.
    4. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    5. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    6. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    7. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    8. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pejman Peykani & Mostafa Sargolzaei & Mohammad Hashem Botshekan & Camelia Oprean-Stan & Amir Takaloo, 2023. "Optimization of Asset and Liability Management of Banks with Minimum Possible Changes," Mathematics, MDPI, vol. 11(12), pages 1-24, June.
    2. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. John R. J. Thompson & Longlong Feng & R. Mark Reesor & Chuck Grace, 2021. "Know Your Clients’ Behaviours: A Cluster Analysis of Financial Transactions," JRFM, MDPI, vol. 14(2), pages 1-29, January.
    5. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    6. Roman Tikhonov & Aleksey Masyutin & Vadim Anpilogov, 2021. "The Relationship Between the Financial Performance of Banks and the Quality of Credit Scoring Models," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 76-95, June.
    7. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    8. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    9. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    10. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    11. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    12. Bauer, Kevin & Nofer, Michael & Abdel-Karim, Benjamin M. & Hinz, Oliver, 2022. "The effects of discontinuing machine learning decision support," SAFE Working Paper Series 370, Leibniz Institute for Financial Research SAFE.
    13. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
    14. Dmytro Kovalenko & Olga Afanasieva & Nani Zabuta & Tetiana Boiko & Rosen Rosenov Baltov, 2021. "Model of Assessing the Overdue Debts in a Commercial Bank Using Neuro-Fuzzy Technologies," JRFM, MDPI, vol. 14(5), pages 1-20, May.
    15. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    16. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    17. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    18. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    19. Ni Zhan, 2021. "Where does the Stimulus go? Deep Generative Model for Commercial Banking Deposits," Papers 2101.09230, arXiv.org.
    20. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    Machine Learning; Model Risk; Credit Card Fraud; Decisions Support; Stress-Testing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03191437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.