IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02901988.html
   My bibliography  Save this paper

Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets

Author

Listed:
  • Matthieu Garcin

    (Research Center - Léonard de Vinci Pôle Universitaire - De Vinci Research Center)

  • Jules Klein
  • Sana Laaribi

Abstract

The time-varying kernel density estimation relies on two free parameters: the bandwidth and the discount factor. We propose to select these parameters so as to minimize a criterion consistent with the traditional requirements of the validation of a probability density forecast. These requirements are both the uniformity and the independence of the so-called probability integral transforms, which are the forecast time-varying cumulated distributions applied to the observations. We thus build a new numerical criterion incorporating both the uniformity and independence properties by the mean of an adapted Kolmogorov-Smirnov statistic. We apply this method to financial markets during the COVID-19 crisis. We determine the time-varying density of daily price returns of several stock indices and, using various divergence statistics, we are able to describe the chronology of the crisis as well as regional disparities. For instance, we observe a more limited impact of COVID-19 on financial markets in China, a strong impact in the US, and a slow recovery in Europe.

Suggested Citation

  • Matthieu Garcin & Jules Klein & Sana Laaribi, 2022. "Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets," Working Papers hal-02901988, HAL.
  • Handle: RePEc:hal:wpaper:hal-02901988
    Note: View the original document on HAL open archive server: https://hal.science/hal-02901988v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02901988v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    2. Niederreiter, Harald, 2017. "Recent constructions of low-discrepancy sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 135(C), pages 18-27.
    3. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    4. Bohdan M. Pavlyshenko, 2020. "Regression Approach for Modeling COVID-19 Spread and its Impact On Stock Market," Papers 2004.01489, arXiv.org.
    5. Harvey, Andrew & Oryshchenko, Vitaliy, 2012. "Kernel density estimation for time series data," International Journal of Forecasting, Elsevier, vol. 28(1), pages 3-14.
    6. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    7. Matthieu Garcin & Dominique Guegan, 2014. "Probability density of the empirical wavelet coefficients of a noisy chaos," Post-Print hal-01310473, HAL.
    8. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2010. "Nonparametric density estimation for multivariate bounded data," LIDAM Reprints CORE 2301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    10. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    11. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    12. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    13. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    14. Ko, Stanley I.M. & Park, Sung Y., 2013. "Multivariate density forecast evaluation: A modified approach," International Journal of Forecasting, Elsevier, vol. 29(3), pages 431-441.
    15. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    16. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    17. Matthieu Garcin & Dominique Guegan, 2014. "Probability density of the empirical wavelet coefficients of a noisy chaos," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01310473, HAL.
    18. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    19. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    20. Tokat, Yesim & Rachev, Svetlozar T. & Schwartz, Eduardo S., 2003. "The stable non-Gaussian asset allocation: a comparison with the classical Gaussian approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 937-969, April.
    21. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Garcin & Jules Klein & Sana Laaribi, 2020. "Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets," Papers 2007.09043, arXiv.org, revised Mar 2022.
    2. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    4. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    5. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    6. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
    7. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    8. Tsyplakov, Alexander, 2013. "Evaluation of Probabilistic Forecasts: Proper Scoring Rules and Moments," MPRA Paper 45186, University Library of Munich, Germany.
    9. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    10. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    11. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    12. Sami MESTIRI, 2022. "Modeling the volatility of Bitcoin returns using Nonparametric GARCH models," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 2-16, June.
    13. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.
    14. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    15. Tsyplakov, Alexander, 2014. "Theoretical guidelines for a partially informed forecast examiner," MPRA Paper 55017, University Library of Munich, Germany.
    16. Markus Eyting & Patrick Schmidt, 2019. "Belief Elicitation with Multiple Point Predictions," Working Papers 1818, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 16 Nov 2020.
    17. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.
    18. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    19. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    20. Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2015. "Two maxentropic approaches to determine the probability density of compound risk losses," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 42-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02901988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.