IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00876865.html
   My bibliography  Save this paper

Information to share in supply chains dedicated to the mass production of customized products for decentralized management

Author

Listed:
  • Carole Camisullis

    (IRG - Institut de Recherche en Gestion - UPEM - Université Paris-Est Marne-la-Vallée - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12)

  • Vincent Giard

    (CRG - Centre de recherche en gestion - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique, LAMSADE - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Gisele Mendy-Bilek

    (UPPA - Université de Pau et des Pays de l'Adour)

Abstract

In an upstream supply chain dedicated to the mass production of customized products, decentralized management can be an efficient and effective method in a steady state in which stochastic characteristics of customers' demands remain stable. However, this is possible only if all echelons that precede the final assembly line use periodic replenishment policies that restrain the stockout risk to a low predetermined probability. The safety stocks' levels are more difficult to define for alternative or optional parts, as well as the components they use, whose demands are weighted sums of random variables, affected by several random factors and organizational constraints. The factors and constraints to consider are not the same for supplied and produced components. The random demand of a component depends on the demand of alternative or optional parts mounted in the final product, through a double transformation involving the bill of materials explosion, which is at the origin of the weighted sum of random variables, and time lags. In the steady state, the knowledge of the probability distribution of that random variable allows for the determination of safety stocks that decouple the management of upstream supply chains. Progressive changes in the steady state require periodic and progressive adaptations of the safety stocks that do not directly depend on the final demand knowledge.

Suggested Citation

  • Carole Camisullis & Vincent Giard & Gisele Mendy-Bilek, 2011. "Information to share in supply chains dedicated to the mass production of customized products for decentralized management," Working Papers hal-00876865, HAL.
  • Handle: RePEc:hal:wpaper:hal-00876865
    Note: View the original document on HAL open archive server: https://hal.science/hal-00876865
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00876865/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gunasekaran, Angappa & Ngai, Eric W.T., 2009. "Modeling and analysis of build-to-order supply chains," European Journal of Operational Research, Elsevier, vol. 195(2), pages 319-334, June.
    2. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    3. Springer, Mark & Kim, Ilhyung, 2010. "Managing the order pipeline to reduce supply chain volatility," European Journal of Operational Research, Elsevier, vol. 203(2), pages 380-392, June.
    4. Sucky, Eric, 2009. "The bullwhip effect in supply chains--An overestimated problem?," International Journal of Production Economics, Elsevier, vol. 118(1), pages 311-322, March.
    5. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    6. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    7. repec:dau:papers:123456789/352 is not listed on IDEAS
    8. Geary, S. & Disney, S.M. & Towill, D.R., 2006. "On bullwhip in supply chains--historical review, present practice and expected future impact," International Journal of Production Economics, Elsevier, vol. 101(1), pages 2-18, May.
    9. repec:dau:papers:123456789/487 is not listed on IDEAS
    10. Ryu, Seung-Jin & Tsukishima, Takahiro & Onari, Hisashi, 2009. "A study on evaluation of demand information-sharing methods in supply chain," International Journal of Production Economics, Elsevier, vol. 120(1), pages 162-175, July.
    11. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    12. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    13. Olhager, Jan & Ostlund, Bjorn, 1990. "An integrated push-pull manufacturing strategy," European Journal of Operational Research, Elsevier, vol. 45(2-3), pages 135-142, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:dau:papers:123456789/9021 is not listed on IDEAS
    2. Vincent Giard & Mustapha Sali, 2012. "Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire," Working Papers hal-00875497, HAL.
    3. Vincent Giard & Mustapha Sali, 2011. "Production à la commande et production pour stock dans un environnement MRP," Working Papers hal-00875557, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2015. "On returns and network configuration in supply chain dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 152-167.
    2. Carole Camisullis & Vincent Giard & Gisele Mendy-Bilek, 2010. "The information to share in upstream supply chains dedicated to mass production of customized products for allowing a decentralized management," Working Papers hal-00876993, HAL.
    3. repec:dau:papers:123456789/3719 is not listed on IDEAS
    4. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    5. de Lima, Daruichi Pereira & Fioriolli, José Carlos & Padula, Antonio Domingos & Pumi, Guilherme, 2018. "The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 55-76.
    6. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    7. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    8. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    9. Ying Rong & Lawrence V. Snyder & Zuo‐Jun Max Shen, 2017. "Bullwhip and reverse bullwhip effects under the rationing game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 203-216, April.
    10. Lin, Junyi & Huang, Hongfu & Li, Shanshan & Naim, Mohamed M., 2023. "On the dynamics of order pipeline inventory in a nonlinear order-up-to system," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    12. Isaksson, Olov H.D. & Seifert, Ralf W., 2016. "Quantifying the bullwhip effect using two-echelon data: A cross-industry empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 311-320.
    13. Caridi, Maria & Moretto, Antonella & Perego, Alessandro & Tumino, Angela, 2014. "The benefits of supply chain visibility: A value assessment model," International Journal of Production Economics, Elsevier, vol. 151(C), pages 1-19.
    14. Choi, Tsan-Ming & Sethi, Suresh, 2010. "Innovative quick response programs: A review," International Journal of Production Economics, Elsevier, vol. 127(1), pages 1-12, September.
    15. Ojha, Divesh & Sahin, Funda & Shockley, Jeff & Sridharan, Sri V., 2019. "Is there a performance tradeoff in managing order fulfillment and the bullwhip effect in supply chains? The role of information sharing and information type," International Journal of Production Economics, Elsevier, vol. 208(C), pages 529-543.
    16. Yu, Yugang & Luo, Yifei & Shi, Ye, 2022. "Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. QU, Zhan & RAFF, Horst, 2023. "Two-part tariffs, inventory stockpiling, and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 308(1), pages 201-214.
    18. Bottani, Eleonora & Montanari, Roberto & Volpi, Andrea, 2010. "The impact of RFID and EPC network on the bullwhip effect in the Italian FMCG supply chain," International Journal of Production Economics, Elsevier, vol. 124(2), pages 426-432, April.
    19. Zotteri, Giulio, 2013. "An empirical investigation on causes and effects of the Bullwhip-effect: Evidence from the personal care sector," International Journal of Production Economics, Elsevier, vol. 143(2), pages 489-498.
    20. Hejn Nielsen, Erland, 2013. "Small sample uncertainty aspects in relation to bullwhip effect measurement," International Journal of Production Economics, Elsevier, vol. 146(2), pages 543-549.
    21. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00876865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.