IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00798811.html
   My bibliography  Save this paper

Multi-objective routing within large scale facilities using open finite queueing networks

Author

Listed:
  • Laoucine Kerbache

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • J. Macgregor Smith

    (Department of Mechanical and Industrial Engineering [UMass] - UMass Amherst - University of Massachusetts [Amherst] - UMASS - University of Massachusetts System)

Abstract

The major objective of this paper is to examine the optimal routing in layout and location problems from a network optimization perspective where manufacturing facilities are modelled as open ®nite queueing networks with a multiobjective set of performance measures. The overall material handling system is broken down into a set of layout topologies. For each one of these topologies the optimal routing is determined so that the product throughput is maximized while minimizing the average sojourn time and holding costs. An approximate analytical decomposition technique for modelling open ®nite queueing networks, called the Generalized Expansion Method (GEM), developed by the authors, is utilized to calculate the desired outputs. A mathematical optimization procedure which is described in this paper is then used to determine the optimal routes. As will be demonstrated, the design methodology of combining the optimization and analytical queueing network models provides a very e€ective procedure for evaluating alternative topologies while simultaneously determining the average sojourn times and the maximum throughputs of the best routes.

Suggested Citation

  • Laoucine Kerbache & J. Macgregor Smith, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," Post-Print hal-00798811, HAL.
  • Handle: RePEc:hal:journl:hal-00798811
    DOI: 10.1016/S0377-2217(99)00018-1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shih-Pin, 2007. "Solving fuzzy queueing decision problems via a parametric mixed integer nonlinear programming method," European Journal of Operational Research, Elsevier, vol. 177(1), pages 445-457, February.
    2. Tsai, Eline R. & Demirtas, Derya & Tintu, Andrei N. & de Jonge, Robert & de Rijke, Yolanda B. & Boucherie, Richard J., 2023. "Design of fork-join networks of First-In-First-Out and infinite-server queues applied to clinical chemistry laboratories," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1101-1117.
    3. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "An agent-based algorithm for dynamic routing in service networks," European Journal of Operational Research, Elsevier, vol. 303(2), pages 719-734.
    4. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.
    5. Tancrez, Jean-Sbastien & Semal, Pierre & Chevalier, Philippe, 2009. "Histogram based bounds and approximations for production lines," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1133-1141, September.
    6. Hui-Yu Zhang & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Ai-Lin Yu & Zhan-Tao Li, 2017. "Performance analysis of open general queuing networks with blocking and feedback," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5760-5781, October.
    7. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    8. Kerbache, Laoucine & MacGregor Smith, James, 2004. "Queueing networks and the topological design of supply chain systems," International Journal of Production Economics, Elsevier, vol. 91(3), pages 251-272, October.
    9. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    10. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    11. Chen, Shih-Pin, 2004. "Parametric nonlinear programming for analyzing fuzzy queues with finite capacity," European Journal of Operational Research, Elsevier, vol. 157(2), pages 429-438, September.
    12. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    13. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    14. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    15. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    16. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    17. Yunyue He & Zhong Liu & Jianmai Shi & Yishan Wang & Jiaming Zhang & Jinyuan Liu, 2015. "K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    18. Pourvaziri, Hani & Pierreval, Henri, 2017. "Dynamic facility layout problem based on open queuing network theory," European Journal of Operational Research, Elsevier, vol. 259(2), pages 538-553.
    19. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    20. Osorio, Carolina & Bierlaire, Michel, 2012. "A tractable analytical model for large-scale congested protein synthesis networks," European Journal of Operational Research, Elsevier, vol. 219(3), pages 588-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00798811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.