Advanced Search
MyIDEAS: Login

Sustained Positive Consumption in a Model of Stochastic Growth: The Role of Risk Aversion

Contents:

Author Info

  • Mitra, Tapan

    (Cornell University)

  • Roy, Santanu

    (Southern Methodist Univesrity)

Abstract

An intriguing problem in stochastic growth theory is as follows: even when the return on investment is arbitrarily high near zero and discounting is arbitrarily mild, long run capital and consumption may be arbitrarily close to zero with probability one. In a convex one-sector model of optimal stochastic growth with i.i.d. shocks, we relate this phenomenon to risk aversion near zero. For a Cobb-Douglas production function with multiplicative uniformly distributed shock, the phenomenon occurs with high discounting if, and only if, risk aversion diverges to infinity sufficiently fast as consumption goes to zero. We specify utility functions for which the phenomenon occurs even when discounting is arbitrarily mild. For the general version of the model, we outline sufficient conditions under which capital and consumption are bounded away from zero almost surely, as well as conditions under which growth occurs almost surely near zero; the latter ensures a uniform positive lower bound on long run consumption (independent of initial capital). These conditions require the expected marginal productivity at zero to be above the discount rate by a factor that depends on the degree of risk aversion near zero.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.arts.cornell.edu/econ/CAE/10.03.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.arts.cornell.edu/econ/CAE/10.03.pdf [301 Moved Permanently]--> http://www.economics.cornell.edu/CAE/10.03.pdf). If this is indeed the case, please notify ()
Download Restriction: no

Bibliographic Info

Paper provided by Cornell University, Center for Analytic Economics in its series Working Papers with number 10-03.

as in new window
Length:
Date of creation: Jul 2010
Date of revision:
Handle: RePEc:ecl:corcae:10-03

Contact details of provider:
Postal: 402 Uris Hall, Ithaca, NY 14853
Phone: (607) 255-9901
Fax: (607) 255-2818
Web page: http://www.arts.cornell.edu/econ/CAE/workingpapers.html
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
  2. Mirman, Leonard J & Zilcha, Itzhak, 1976. "Unbounded Shadow Prices for Optimal Stochastic Growth Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(1), pages 121-32, February.
  3. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.
  4. Mitra, Tapan & Roy, Santanu, 2003. "Optimal Exploitation of Renewable Resources under Uncertainty and the Extinction of Species," Working Papers 03-10, Cornell University, Center for Analytic Economics.
  5. Olson, Lars J. & Roy, Santanu, 2000. "Dynamic Efficiency of Conservation of Renewable Resources under Uncertainty," Journal of Economic Theory, Elsevier, vol. 95(2), pages 186-214, December.
  6. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
  7. Takashi Kamihigashi, 2003. "Almost Sure Convergence to Zero in Stochastic Growth Models," Discussion Paper Series 140, Research Institute for Economics & Business Administration, Kobe University.
  8. Mendelssohn, Roy & Sobel, Matthew J., 1980. "Capital accumulation and the optimization of renewable resource models," Journal of Economic Theory, Elsevier, vol. 23(2), pages 243-260, October.
  9. Boylan, Edward S., 1979. "On the avoidance of extinction in one-sector growth models," Journal of Economic Theory, Elsevier, vol. 20(2), pages 276-279, April.
  10. Danyang Xie, 2000. "Power Risk Aversion Utility Functions," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 265-282, November.
  11. Mirman, Leonard J. & Zilcha, Itzhak, 1977. "Characterizing optimal policies in a one-sector model of economic growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 14(2), pages 389-401, April.
  12. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Acemoglu, Daron, 2012. "Introduction to economic growth," Journal of Economic Theory, Elsevier, vol. 147(2), pages 545-550.
  2. Herbst, Anthony F. & Wu, Joseph S.K. & Ho, Chi Pui, 2012. "Relationship between risk attitude and economic recovery in optimal growth theory," Global Finance Journal, Elsevier, vol. 23(3), pages 141-150.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:10-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.