Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stochastic Optimal Growth with Bounded or Unbounded Utility and with Bounded or Unbounded Shocks

Contents:

Author Info

  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

Abstract

This paper studies a one-sector stochastic optimal growth model with i.i.d. productivity shocks in which utility is allowed to be bounded or unbounded, the shocks are allowed to be bounded or unbounded, and the production function is not required to satisfy the Inada conditions at zero and infinity. Our main results are threefold. First, we confirm the Euler equation as well as the existence of a continuous optimal policy function under a minimal set of assumptions. Second, we establish the existence of an invariant distribution under quite general assumptions. Third, we show that the output density converges to a unique invariant density independently of initial output under the assumption that the shock distribution has a density whose support is an interval, bounded or unbounded. In addition, we provide existence and stability results for general one-dimensional Markov processes.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Research Institute for Economics & Business Administration, Kobe University in its series Discussion Paper Series with number 176.

as in new window
Length: 33 pages
Date of creation: Sep 2005
Date of revision:
Handle: RePEc:kob:dpaper:176

Contact details of provider:
Postal: 2-1 Rokkodai, Nada, Kobe 657-8501 JAPAN
Phone: +81-(0)78 803 7036
Fax: +81-(0)78 803 7059
Web page: http://www.rieb.kobe-u.ac.jp/index-e.html
More information through EDIRC

Related research

Keywords: Stochastic growth; Unbounded utility; Bounded or unbounded shocks; Markov processes; Existence and stability of a invariant distribution;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Takashi Kamihigashi & Santanu Roy, 2003. "A Nonsmooth, Nonconvex Model of Optimal Growth," Discussion Paper Series 139, Research Institute for Economics & Business Administration, Kobe University.
  2. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
  3. Takashi Kamihigashi, 2003. "Almost Sure Convergence to Zero in Stochastic Growth Models," Discussion Paper Series 140, Research Institute for Economics & Business Administration, Kobe University.
  4. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
  5. Mitra, Tapan & Roy, Santanu, 2003. "Optimal Exploitation of Renewable Resources under Uncertainty and the Extinction of Species," Working Papers 03-10, Cornell University, Center for Analytic Economics.
  6. LE VAN, Cuong & MORHAIM, Lisa, 2001. "Optimal growth models with bounded or unbounded returns: a unifying approach," CORE Discussion Papers 2001034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Nishimura, Kazuo & Rudnicki, Ryszard & Stachurski, John, 2006. "Stochastic optimal growth with nonconvexities," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 74-96, February.
  8. Nishimura, Kazuo & Stachurski, John, 2005. "Stability of stochastic optimal growth models: a new approach," Journal of Economic Theory, Elsevier, vol. 122(1), pages 100-118, May.
  9. Mitra, Tapan & Montrucchio, Luigi & Privileggi, Fabio, 2001. "The Nature of the Steady State in Models of Optimal Growth Under Uncertainty," Working Papers 01-04, Cornell University, Center for Analytic Economics.
  10. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
  11. Olson, Lars J. & Roy, Santanu, 2005. "Theory of Stochastic Optimal Economic Growth," Working Papers 28601, University of Maryland, Department of Agricultural and Resource Economics.
  12. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
  13. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
  14. Duran, Jorge, 2000. "Discounting Long Run Average Growth in Stochastic Dynamic Programs," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2000006, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  15. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
  2. Yiyong Cai & Takashi Kamihigashi & John Stachurski, 2012. "Stochastic Optimal Growth with Risky Labor Supply," Discussion Paper Series DP2012-24, Research Institute for Economics & Business Administration, Kobe University.
  3. Liutang Gong & Xiaojun Zhao & Heng-fu Zou, 2010. "Stochastic Growth with the Social-Status Concern: The Existence of a Unique Stable Distribution," CEMA Working Papers 408, China Economics and Management Academy, Central University of Finance and Economics.
  4. Yuzhe Zhang, 2005. "Stochastic optimal growth with a non-compact state space," Working Papers 639, Federal Reserve Bank of Minneapolis.
  5. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
  6. Gong, Liutang & Zhao, Xiaojun & Yang, Yunhong & Hengfu, Zou, 2010. "Stochastic growth with social-status concern: The existence of a unique stable distribution," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 505-518, July.
  7. Takashi Kamihigashi & John Stachurski, 2011. "Stability of Stationary Distributions in Monotone Economies," ANU Working Papers in Economics and Econometrics 2011-561, Australian National University, College of Business and Economics, School of Economics.
  8. Takashi Kamihigashi & John Stachurski, 2011. "Existence, Stability and Computation of Stationary Distributions: An Extension of the Hopenhayn-Prescott Theorem," Discussion Paper Series DP2011-32, Research Institute for Economics & Business Administration, Kobe University.
  9. Takashi Kamihigashi & John Stachurski, 2009. "Asymptotics Of Stochastic Recursive Economies Under Monotonicity," KIER Working Papers 666, Kyoto University, Institute of Economic Research.
  10. Takashi Kamihigashi & John Stachurski, 2013. "Stochastic Stability in Monotone Economies," Discussion Paper Series DP2013-02, Research Institute for Economics & Business Administration, Kobe University.
  11. R. Anton Braun & Huiyu Li & John Stachurski, 2011. "Generalized Look-Ahead Methods for Computing Stationary Densities," ANU Working Papers in Economics and Econometrics 2011-558, Australian National University, College of Business and Economics, School of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:176. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.