Advanced Search
MyIDEAS: Login

Local Constant and Local Bilinear Multiple-Output Quantile Regression

Contents:

Author Info

  • Marc Hallin
  • Zudi Lu
  • Davy Paindaveine
  • Miroslav Siman

Abstract

A new quantile regression concept, based on a directional version of Koenker and Bassett’s traditional single-output one, has been introduced in [Hallin, Paindaveine and ¡Siman, Annals of Statistics 2010, 635-703] for multiple-output regression problems. The polyhedral contours provided by the empirical counterpart of that concept, however, cannot adapt to nonlinear and/or heteroskedastic dependencies. This paper therefore introduces local constant and local linear versions of those contours, which both allow to asymptotically recover the conditional halfspace depth contours of the response. In the multiple-output context considered, the local linear construction actually is of a bilinear nature. Bahadur representation and asymptotic normality results are established. Illustrations are provided both on simulated and real data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/106956/1/2012-003-HALLIN_ZU_PAINDAVEINE_SIMAN-localconstant.pdf
Download Restriction: no

Bibliographic Info

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2012-003.

as in new window
Length: 41 p.
Date of creation: Jan 2012
Date of revision:
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/106956

Contact details of provider:
Postal: Av. F.D., Roosevelt, 39, 1050 Bruxelles
Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be
More information through EDIRC

Related research

Keywords: nonparametric regression; local bilineear regression; quantile regression; multivariate quantile; growth chart; halfspace depth;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1529-1564, October.
  2. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(3), pages 459-470, September.
  3. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
  4. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1180-1200, August.
  5. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
  6. Keming Yu & Zudi Lu, 2004. "Local Linear Additive Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 31(3), pages 333-346.
  7. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
  8. Ioannides, D. A., 2004. "Fixed design regression quantiles for time series," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 235-245, July.
  9. Yu, Keming & Jones, M. C., 1997. "A comparison of local constant and local linear regression quantile estimators," Computational Statistics & Data Analysis, Elsevier, vol. 25(2), pages 159-166, July.
  10. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
  11. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/106956. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.