Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting Large Datasets with Conditionally Heteroskedastic Dynamic Common Factors

Contents:

Author Info

  • Lucia Alessi
  • Matteo Barigozzi
  • Marco Capasso

Abstract

We propose a new method for multivariate forecasting which combines Dynamic Factor and multivariate GARCH models. We call the model Dynamic Factor GARCH, as the information contained in large macroeconomic or financial datasets is captured by a few dynamic common factors, which we assume being conditionally heteroskedastic. After describing the estimation of the model, we present simulation results and carry out two empirical applications on financial asset returns and macroeconomic series, with a particular focus on different measures of inflation. Our proposed model outperforms the benchmarks in forecasting the conditional volatility of returns and the inflation level. Moreover, it allows to predict conditional covariances of all the time series in the panel.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/54117/1/RePEc_eca_wpaper_2009_005.pdf
Download Restriction: no

Bibliographic Info

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number 2009_005.

as in new window
Length: 40 p.
Date of creation: 2009
Date of revision:
Publication status: Published by:
Handle: RePEc:eca:wpaper:2009_005

Contact details of provider:
Postal: Av. F.D., Roosevelt, 39, 1050 Bruxelles
Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be
More information through EDIRC

Related research

Keywords: Dynamic factors; multivariate GARCH; covolatility forecasting; inflation forecasting;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2009_005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.