Advanced Search
MyIDEAS: Login

The Harmonic Fisher Equation and the Inflationary Bias of Real Uncertainty

Contents:

Author Info

Abstract

The classical Fisher equation asserts that in a nonstochastic economy, the inflation rate must equal the difference between the nominal and real interest rates. We extend this equation to a representative agent economy with real uncertainty in which the central bank sets the nominal rate of interest. The Fisher equation still holds, but with the rate of inflation replaced by the harmonic mean of the growth rate of money. Except for logarithmic utility, we show that on almost every path the long-run rate of inflation is strictly higher than it would be in the nonstochastic world obtained by replacing output with expected output in every period. If the central bank sets the nominal interest rate equal to the discount rate of the representative agent, then the long-run rate of inflation is positive (and the same) on almost every path. By contrast, the classical Fisher equation asserts that inflation should then be zero. In fact, no constant interest rate will stabilize prices, even if the economy is stationary with bounded i.d.d. shocks. The central bank must actively manage interest rates if it wants to keep prices bounded forever. However, not even an active central bank can keep prices exactly constant.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d14a/d1424.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1424.

as in new window
Length: 27 pages
Date of creation: Jun 2003
Date of revision:
Handle: RePEc:cwl:cwldpp:1424

Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Inflation; equilibrium; Control; Interest rate; Central bank; Harmonic Fisher equation;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. James R. Rhodes, 2006. "DEVOLUTION OF THE FISHER EQUATION: Rational Appreciation to Money Illusion," GRIPS Discussion Papers 07-05, National Graduate Institute for Policy Studies, revised Sep 2007.
  2. Orus, Juan & González, Manuel, 2004. "Inflation-Proof Credits and Financial Instruments. Making the Fisher Hypothesis a Reality," MPRA Paper 343, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1424. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.