Advanced Search
MyIDEAS: Login

Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes

Contents:

Author Info

  • Elena Vigna

    ()
    (University of Turin and CeRP-Collegio Carlo Alberto, Turin)

Registered author(s):

    Abstract

    We consider the portfolio selection problem in the accumulation phase of a defined contribution pension scheme in continuous time, and compare the mean-variance and the expected utility maximization approaches. Using the embedding technique pioneered by Zhou and Li (2000) we first find the efficient frontier of portfolios in the Black-Scholes financial market. Then, using standard stochastic optimal control we find the optimal portfolios derived via expected utility for popular utility functions. As a main result, we prove that the optimal portfolios derived with the CARA and CRRA utility functions are not mean-variance efficient. As a corollary, we prove that this holds also in the standard portfolio selection problem. We provide a natural measure of inefficiency based on the difference between optimal portfolio variance and minimal variance, and we show its dependence on risk aversion, Sharpe ratio of the risky asset, time horizon, initial wealth and contribution rate. Numerical examples illustrate the extent of inefficiency of CARA and CRRA utility functions in defined contribution pension schemes.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://cerp.unito.it/images/stories/pubblicazioni/wp_89.pdf
    Our checks indicate that this address may not be valid because: 500 Can't connect to cerp.unito.it:80 (Bad hostname). If this is indeed the case, please notify (Silvia Maero)
    Download Restriction: no

    Bibliographic Info

    Paper provided by Center for Research on Pensions and Welfare Policies, Turin (Italy) in its series CeRP Working Papers with number 89.

    as in new window
    Length: 40 pages
    Date of creation: Sep 2009
    Date of revision:
    Handle: RePEc:crp:wpaper:89

    Contact details of provider:
    Postal: Via Real Collegio 30, 10024 Moncalieri (TO)
    Phone: 39 011 6705040
    Fax: +39 011 6705042
    Email:
    Web page: http://cerp.unito.it
    More information through EDIRC

    Related research

    Keywords: Mean-variance approach; efficient frontier; expected utility maximization; defined contribution pension scheme; portfolio selection; risk aversion; Sharpe ratio;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2004. "Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans," LSE Research Online Documents on Economics 24831, London School of Economics and Political Science, LSE Library.
    2. Robert R. Grauer & Nils H. Hakansson, 1993. "On the Use of Mean-Variance and Quadratic Approximations in Implementing Dynamic Investment Strategies: A Comparison of Returns and Investment Policies," Management Science, INFORMS, vol. 39(7), pages 856-871, July.
    3. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-78, July.
    4. Laura Schechter, 2007. "Risk aversion and expected-utility theory: A calibration exercise," Journal of Risk and Uncertainty, Springer, vol. 35(1), pages 67-76, August.
    5. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    6. Amos Tversky & Daniel Kahneman, 1979. "Prospect Theory: An Analysis of Decision under Risk," Levine's Working Paper Archive 7656, David K. Levine.
    7. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    8. Robert Bordley & Marco LiCalzi, 2000. "Decision analysis using targets instead of utility functions," Decisions in Economics and Finance, Springer, vol. 23(1), pages 53-74.
    9. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    10. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi & Elena Vigna, 2010. "Constrained portfolio choices in the decumulation phase of a pension plan," Carlo Alberto Notebooks 155, Collegio Carlo Alberto.
    11. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    12. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    13. Hakansson, Nils H., 1971. "Capital Growth and the Mean-Variance Approach to Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(01), pages 517-557, January.
    14. Luigi Guiso & Monica Paiella, 2008. "Risk Aversion, Wealth, and Background Risk," Journal of the European Economic Association, MIT Press, vol. 6(6), pages 1109-1150, December.
    15. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    16. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    17. Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
    18. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    19. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    20. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    21. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    22. Xiao, Jianwu & Hong, Zhai & Qin, Chenglin, 2007. "The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 302-310, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:crp:wpaper:89. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Silvia Maero).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.