IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt5nf0m5mc.html
   My bibliography  Save this paper

Challenges and Opportunities for Publicly Funded Electric Vehicle Carsharing

Author

Listed:
  • Rodier, Caroline
  • Randall, Creighton
  • Garcia Sanchez, Juan Carlos
  • Harrison, Makenna
  • Francisco, Jerel
  • Tovar, Angelly

Abstract

Over the last six years, from 2016 through 2021, a wave of new federal, state, and local funding has supported carsharing services that use electric vehicles and install electric vehicle chargers to reduce greenhouse gas emissions (GHGs) and address climate change. In addition, many of these same funding programs allow support for the location of services in underserved communities with fare levels that enable community members to access these services. This study first explores the potential climate change benefits for carsharing services and the need for these services in underserved areas by reviewing the available published literature. Next, the study discusses the evolution of carsharing in the U.S., including non-profit, for-profit, and recent government-funded carsharing, drawing on published reports, newspaper articles, and expert interviews. Finally, the authors draw conclusions of relevance for future government-funded carsharing programs. View the NCST Project Webpage

Suggested Citation

  • Rodier, Caroline & Randall, Creighton & Garcia Sanchez, Juan Carlos & Harrison, Makenna & Francisco, Jerel & Tovar, Angelly, 2022. "Challenges and Opportunities for Publicly Funded Electric Vehicle Carsharing," Institute of Transportation Studies, Working Paper Series qt5nf0m5mc, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt5nf0m5mc
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/5nf0m5mc.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Kyeongsu, 2015. "Can carsharing meet the mobility needs for the low-income neighborhoods? Lessons from carsharing usage patterns in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 249-260.
    2. Clewlow, Regina R., 2016. "Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area," Transport Policy, Elsevier, vol. 51(C), pages 158-164.
    3. Martin, Elliot W & Shaheen, Susan A, 2011. "Greenhouse Gas Emission Impacts of Carsharing in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wr90040, Institute of Transportation Studies, UC Berkeley.
    4. Martin, Elliot PhD & Stocker, Adam & Nichols, Aqshems & Shaheen, Susan PhD, 2021. "Roundtrip Carsharing in New York City: An Evaluation of a Pilot Program and System Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5kb1r71v, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Alexandra Q. & Martin, Elliot W. & Shaheen, Susan A., 2022. "Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice," Transport Policy, Elsevier, vol. 127(C), pages 103-115.
    2. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.
    4. Vinayak, Pragun & Dias, Felipe F. & Astroza, Sebastian & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels," Transport Policy, Elsevier, vol. 72(C), pages 129-137.
    5. Cen Zhang & Jan-Dirk Schmöcker & Martin Trépanier, 2022. "Latent stage model for carsharing usage frequency estimation with Montréal case study," Transportation, Springer, vol. 49(1), pages 185-211, February.
    6. Yun Wang & Xuedong Yan & Yu Zhou & Qingwan Xue & Li Sun, 2017. "Individuals’ Acceptance to Free-Floating Electric Carsharing Mode: A Web-Based Survey in China," IJERPH, MDPI, vol. 14(5), pages 1-24, May.
    7. Kent, Jennifer & Dowling, Robyn & Maalsen, Sophia, 2017. "Catalysts for transport transitions: Bridging the gap between disruptions and change," Journal of Transport Geography, Elsevier, vol. 60(C), pages 200-207.
    8. Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    9. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    10. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    11. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    12. Felipe F. Dias & Patrícia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    13. Curtale, Riccardo & Liao, Feixiong & van der Waerden, Peter, 2021. "User acceptance of electric car-sharing services: The case of the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 266-282.
    14. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    15. Harold, Brian MBA & Rodier, Caroline PhD & Zhang, Yunwan MS, 2022. "Retrospective User Survey for a Rural Electric Vehicle Carsharing Pilot in California’s Central Valley," Institute of Transportation Studies, Working Paper Series qt5ks6j0qk, Institute of Transportation Studies, UC Davis.
    16. Scott B. Kelley & Bradley W. Lane & John M. DeCicco, 2019. "Pumping the Brakes on Robot Cars: Current Urban Traveler Willingness to Consider Driverless Vehicles," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    17. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    18. Aguilera-García, Álvaro & Gomez, Juan & Antoniou, Constantinos & Vassallo, José Manuel, 2022. "Behavioral factors impacting adoption and frequency of use of carsharing: A tale of two European cities," Transport Policy, Elsevier, vol. 123(C), pages 55-72.
    19. Teng Yu & Yajun Zhang & Ai Ping Teoh & Anchao Wang & Chengliang Wang, 2023. "Factors Influencing University Students’ Behavioral Intention to Use Electric Car-Sharing Services in Guangzhou, China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    20. Jin, Fanglei & Yao, Enjian & An, Kun, 2020. "Analysis of the potential demand for battery electric vehicle sharing: Mode share and spatiotemporal distribution," Journal of Transport Geography, Elsevier, vol. 82(C).

    More about this item

    Keywords

    Business; Social and Behavioral Sciences; Electric vehicles; Equity (Justice); Government funding; Public private partnerships; Vehicle sharing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt5nf0m5mc. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.