Advanced Search
MyIDEAS: Login to save this paper or follow this series

Pricing of options on stocks driven by multi-dimensional operator stable Levy processes

Contents:

Author Info

  • Przemyslaw Repetowicz
  • Peter Richmond
Registered author(s):

    Abstract

    We model the price of a stock via a Lang\'{e}vin equation with multi-dimensional fluctuations coupled in the price and in time. We generalize previous models in that we assume that the fluctuations conditioned on the time step are compound Poisson processes with operator stable jump intensities. We derive exact relations for Fourier transforms of the jump intensity in case of different scaling indices $\underline{\underline{E}}$ of the process. We express the Fourier transform of the joint probability density of the process to attain given values at several different times and to attain a given maximal value in a given time period through Fourier transforms of the jump intensity. Then we consider a portfolio composed of stocks and of options on stocks and we derive the Fourier transform of a random variable $\mathfrak{D}_t$ (deviation of the portfolio) that is defined as a small temporal change of the portfolio diminished by the the compound interest earned. We show that if the price of the option at time $t$ satisfies a certain functional equation specified in text then the deviation of the portfolio has a zero mean $E[ \mathfrak{D}_t ] = 0$ and the option pricing problem may have a solution. We compare our approach to other approaches that assumed the log-characteristic function of the fluctuations that drive the stock price to be an analytic function.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/math-ph/0412071
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number math-ph/0412071.

    as in new window
    Length:
    Date of creation: Dec 2004
    Date of revision: Feb 2005
    Handle: RePEc:arx:papers:math-ph/0412071

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. M. Raberto & E. Scalas & F. Mainardi, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Papers cond-mat/0203596, arXiv.org.
    2. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:math-ph/0412071. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.