IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.08683.html
   My bibliography  Save this paper

Detecting Financial Market Manipulation with Statistical Physics Tools

Author

Listed:
  • Haochen Li
  • Maria Polukarova
  • Carmine Ventre

Abstract

We take inspiration from statistical physics to develop a novel conceptual framework for the analysis of financial markets. We model the order book dynamics as a motion of particles and define the momentum measure of the system as a way to summarise and assess the state of the market. Our approach proves useful in capturing salient financial market phenomena: in particular, it helps detect the market manipulation activities called spoofing and layering. We apply our method to identify pathological order book behaviours during the flash crash of the LUNA cryptocurrency, uncovering widespread instances of spoofing and layering in the market. Furthermore, we establish that our technique outperforms the conventional Z-score-based anomaly detection method in identifying market manipulations across both LUNA and Bitcoin cryptocurrency markets.

Suggested Citation

  • Haochen Li & Maria Polukarova & Carmine Ventre, 2023. "Detecting Financial Market Manipulation with Statistical Physics Tools," Papers 2308.08683, arXiv.org.
  • Handle: RePEc:arx:papers:2308.08683
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.08683
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luisa Mendonça & Alan De Genaro, 2020. "Detection and analysis of occurrences of spoofing in the Brazilian capital market," Journal of Financial Regulation and Compliance, Emerald Group Publishing Limited, vol. 28(3), pages 369-408, March.
    2. Jean-Noel Tuccella & Philip Nadler & Ovidiu c{S}erban, 2021. "Protecting Retail Investors from Order Book Spoofing using a GRU-based Detection Model," Papers 2110.03687, arXiv.org.
    3. Álvaro Cartea & Sebastian Jaimungal & Yixuan Wang, 2020. "Spoofing and Price Manipulation in Order-Driven Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 67-98, July.
    4. Yoshihiro Yura & Hideki Takayasu & Didier Sornette & Misako Takayasu, 2014. "Financial Brownian particle in the layered order book fluid and Fluctuation-Dissipation relations," Papers 1401.8065, arXiv.org.
    5. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    6. Yoshihiro Yura & Hideki Takayasu & Didier Sornette & Misako Takayasu, 2015. "Financial Knudsen number: breakdown of continuous price dynamics and asymmetric buy and sell structures confirmed by high precision order book information," Papers 1508.06024, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haochen Li & Yi Cao & Maria Polukarov & Carmine Ventre, 2023. "An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics," Papers 2308.14235, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    2. Haochen Li & Yi Cao & Maria Polukarov & Carmine Ventre, 2023. "An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics," Papers 2308.14235, arXiv.org, revised Dec 2023.
    3. Peter B. Lerner, 2021. "Transmission of Trading Orders through Communication Line with Relativistic Delay," IJFS, MDPI, vol. 9(1), pages 1-11, February.
    4. David Byrd, 2023. "Learning Not to Spoof," Papers 2306.06087, arXiv.org.
    5. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    6. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    7. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    8. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    9. Zhang, Wei & Bi, Zhengzheng & Shen, Dehua, 2017. "Investor structure and the price–volume relationship in a continuous double auction market: An agent-based modeling perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 345-355.
    10. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    11. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    12. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    13. Cayé, Thomas & Herdegen, Martin & Muhle-Karbe, Johannes, 2020. "Scaling limits of processes with fast nonlinear mean reversion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1994-2031.
    14. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    15. Philipp Weber & Bernd Rosenow, 2006. "Large stock price changes: volume or liquidity?," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 7-14.
    16. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    17. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    19. Sandro Claudio Lera & Didier Sornette, 2015. "Currency target zone modeling: An interplay between physics and economics," Papers 1508.04754, arXiv.org, revised Oct 2015.
    20. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.08683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.