IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.08938.html
   My bibliography  Save this paper

Baseline validation of a bias-mitigated loan screening model based on the European Banking Authority's trust elements of Big Data & Advanced Analytics applications using Artificial Intelligence

Author

Listed:
  • Alessandro Danovi
  • Marzio Roma
  • Davide Meloni
  • Stefano Olgiati
  • Fernando Metelli

Abstract

The goal of our 4-phase research project was to test if a machine-learning-based loan screening application (5D) could detect bad loans subject to the following constraints: a) utilize a minimal-optimal number of features unrelated to the credit history, gender, race or ethnicity of the borrower (BiMOPT features); b) comply with the European Banking Authority and EU Commission principles on trustworthy Artificial Intelligence (AI). All datasets have been anonymized and pseudoanonymized. In Phase 0 we selected a subset of 10 BiMOPT features out of a total of 84 features; in Phase I we trained 5D to detect bad loans in a historical dataset extracted from a mandatory report to the Bank of Italy consisting of 7,289 non-performing loans (NPLs) closed in the period 2010-2021; in Phase II we assessed the baseline performance of 5D on a distinct validation dataset consisting of an active portolio of 63,763 outstanding loans (performing and non-performing) for a total financed value of over EUR 11.5 billion as of December 31, 2021; in Phase III we will monitor the baseline performance for a period of 5 years (2023-27) to assess the prospective real-world bias-mitigation and performance of the 5D system and its utility in credit and fintech institutions. At baseline, 5D correctly detected 1,461 bad loans out of a total of 1,613 (Sensitivity = 0.91, Prevalence = 0.0253;, Positive Predictive Value = 0.19), and correctly classified 55,866 out of the other 62,150 exposures (Specificity = 0.90, Negative Predictive Value = 0.997). Our preliminary results support the hypothesis that Big Data & Advanced Analytics applications based on AI can mitigate bias and improve consumer protection in the loan screening process without compromising the efficacy of the credit risk assessment. Further validation is required to assess the prospective performance and utility of 5D in credit and fintech institutions.

Suggested Citation

  • Alessandro Danovi & Marzio Roma & Davide Meloni & Stefano Olgiati & Fernando Metelli, 2022. "Baseline validation of a bias-mitigated loan screening model based on the European Banking Authority's trust elements of Big Data & Advanced Analytics applications using Artificial Intelligence," Papers 2206.08938, arXiv.org.
  • Handle: RePEc:arx:papers:2206.08938
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.08938
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    2. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    3. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    8. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    9. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    10. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    11. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    12. James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
    13. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    14. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    15. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    16. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    17. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    18. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    19. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. Yuanchao Emily Bo & David V. Budescu & Charles Lewis & Philip E. Tetlock & Barbara Mellers, 2017. "An IRT forecasting model: linking proper scoring rules to item response theory," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(2), pages 90-103, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.08938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.