IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.09105.html
   My bibliography  Save this paper

Credit Valuation Adjustment with Replacement Closeout: Theory and Algorithms

Author

Listed:
  • Chaofan Sun
  • Ken Seng Tan
  • Wei Wei

Abstract

The replacement closeout convention has drawn more and more attention since the 2008 financial crisis. Compared with the conventional risk-free closeout, the replacement closeout convention incorporates the creditworthiness of the counterparty and thus providing a more accurate estimate of the Mark-to-market value of a financial claim. In contrast to the risk-free closeout, the replacement closeout renders a nonlinear valuation system, which constitutes the major difficulty in the valuation of the counterparty credit risk. In this paper, we show how to address the nonlinearity attributed to the replacement closeout in the theoretical and computational analysis. In the theoretical part, we prove the unique solvability of the nonlinear valuation system and study the impact of the replacement closeout on the credit valuation adjustment. In the computational part, we propose a neural network-based algorithm for solving the (high dimensional) nonlinear valuation system and effectively alleviating the curse of dimensionality. We numerically compare the computational cost for the valuations with risk-free and replacement closeouts. The numerical tests confirm both the accuracy and the computational efficiency of our proposed algorithm for the valuation of the replacement closeout.

Suggested Citation

  • Chaofan Sun & Ken Seng Tan & Wei Wei, 2022. "Credit Valuation Adjustment with Replacement Closeout: Theory and Algorithms," Papers 2201.09105, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2201.09105
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.09105
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    2. Damiano Brigo & Agostino Capponi & Andrea Pallavicini, 2014. "Arbitrage-Free Bilateral Counterparty Risk Valuation Under Collateralization And Application To Credit Default Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 125-146, January.
    3. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    4. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    5. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    6. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    7. Myerson, Roger B, 1979. "Incentive Compatibility and the Bargaining Problem," Econometrica, Econometric Society, vol. 47(1), pages 61-73, January.
    8. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    9. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    10. Partha Dasgupta & Peter Hammond & Eric Maskin, 1979. "The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 46(2), pages 185-216.
    11. Picard, Pierre, 2000. "On the Design of Optimal Insurance Policies under Manipulation of Audit Cost," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1049-1071, November.
    12. Kim, Jinbeom & Leung, Tim, 2016. "Pricing derivatives with counterparty risk and collateralization: A fixed point approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 525-539.
    13. Andrea Pallavicini & Daniele Perini & Damiano Brigo, 2011. "Funding Valuation Adjustment: a consistent framework including CVA, DVA, collateral,netting rules and re-hypothecation," Papers 1112.1521, arXiv.org, revised Dec 2011.
    14. Zuo Quan Xu & Xun Yu Zhou & Sheng Chao Zhuang, 2019. "Optimal insurance under rank‐dependent utility and incentive compatibility," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 659-692, April.
    15. Leif Andersen & Darrell Duffie & Yang Song, 2019. "Funding Value Adjustments," Journal of Finance, American Finance Association, vol. 74(1), pages 145-192, February.
    16. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    17. Brigo, Damiano & Francischello, Marco & Pallavicini, Andrea, 2019. "Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and disentanglement," European Journal of Operational Research, Elsevier, vol. 274(2), pages 788-805.
    18. Duffie, Darrell & Huang, Ming, 1996. "Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
    19. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    20. Damiano Brigo & Cristin Buescu & Massimo Morini, 2012. "Counterparty Risk Pricing: Impact Of Closeout And First-To-Default Times," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-23.
    21. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    2. Francesca Biagini & Alessandro Gnoatto & Immacolata Oliva, 2019. "Pricing of counterparty risk and funding with CSA discounting, portfolio effects and initial margin," Working Papers 04/2019, University of Verona, Department of Economics.
    3. Brigo, Damiano & Francischello, Marco & Pallavicini, Andrea, 2019. "Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and disentanglement," European Journal of Operational Research, Elsevier, vol. 274(2), pages 788-805.
    4. Damiano Brigo & Cristin Buescu & Marco Francischello & Andrea Pallavicini & Marek Rutkowski, 2022. "Nonlinear Valuation with XVAs: Two Converging Approaches," Mathematics, MDPI, vol. 10(5), pages 1-31, March.
    5. Joel P. Villarino & 'Alvaro Leitao & Jos'e A. Garc'ia-Rodr'iguez, 2022. "Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk," Papers 2210.02175, arXiv.org.
    6. Damiano Brigo & Federico Graceffa & Alexander Kalinin, 2021. "Mild to classical solutions for XVA equations under stochastic volatility," Papers 2112.11808, arXiv.org.
    7. Kun Tian & Dewen Xiong & Wenchao Yan & George Xianzhi Yuan, 2018. "The study of dynamics for credit default risk by backward stochastic differential equation method," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-32, December.
    8. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2020. "Robust XVA," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 738-781, July.
    9. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    10. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    11. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    12. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    13. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    14. Ballotta, Laura & Fusai, Gianluca & Marazzina, Daniele, 2019. "Integrated structural approach to Credit Value Adjustment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1143-1157.
    15. Carole Bernard & Weidong Tian, 2010. "Insurance Market Effects of Risk Management Metrics," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 35(1), pages 47-80, June.
    16. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    17. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    18. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," Papers 2101.09890, arXiv.org, revised Jan 2021.
    19. Junbeom Lee & Chao Zhou, 2021. "Binary funding impacts in derivative valuation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 242-278, January.
    20. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.09105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.