IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.03517.html
   My bibliography  Save this paper

Representation of probability distributions with implied volatility and biological rationale

Author

Listed:
  • Felix Polyakov

Abstract

Economic and financial theories and practice essentially deal with uncertain future. Humans encounter uncertainty in different kinds of activity, from sensory-motor control to dynamics in financial markets, what has been subject of extensive studies. Representation of uncertainty with normal or lognormal distribution is a common feature of many of those studies. For example, proposed Bayessian integration of Gaussian multisensory input in the brain or log-normal distribution of future asset price in renowned Black-Scholes-Merton (BSM) model for pricing contingent claims. Standard deviation of log(future asset price) scaled by square root of time in the BSM model is called implied volatility. Actually, log(future asset price) is not normally distributed and traders account for that to avoid losses. Nevertheless the BSM formula derived under the assumption of constant volatility remains a major uniform framework for pricing options in financial markets. I propose that one of the reasons for such a high popularity of the BSM formula could be its ability to translate uncertainty measured with implied volatility into price in a way that is compatible with human intuition for measuring uncertainty. The present study deals with mathematical relationship between uncertainty and the BSM implied volatility. Examples for a number of common probability distributions are presented. Overall, this work proposes that representation of various probability distributions in terms of the BSM implied volatility profile may be meaningful in both biological and financial worlds. Necessary background from financial mathematics is provided in the text.

Suggested Citation

  • Felix Polyakov, 2021. "Representation of probability distributions with implied volatility and biological rationale," Papers 2110.03517, arXiv.org.
  • Handle: RePEc:arx:papers:2110.03517
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.03517
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Polyakov, 2022. "Biology-inspired geometric representation of probability and applications to completion and options' pricing," Papers 2209.04264, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    2. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    4. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    6. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    8. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    9. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    10. Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    11. Carrillo, Juan & Brocas, Isabelle, 2007. "Reason, Emotion and Information Processing in the Brain," CEPR Discussion Papers 6535, C.E.P.R. Discussion Papers.
    12. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    13. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    14. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    15. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    16. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Long Luu & Alan A Stocker, 2021. "Categorical judgments do not modify sensory representations in working memory," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-28, June.
    18. Udo A Ernst & Sunita Mandon & Nadja Schinkel–Bielefeld & Simon D Neitzel & Andreas K Kreiter & Klaus R Pawelzik, 2012. "Optimality of Human Contour Integration," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-17, May.
    19. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    20. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2016. "Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.03517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.