IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.14824.html
   My bibliography  Save this paper

Risk contributions of lambda quantiles

Author

Listed:
  • Akif Ince
  • Ilaria Peri
  • Silvana Pesenti

Abstract

Risk contributions of portfolios form an indispensable part of risk adjusted performance measurement. The risk contribution of a portfolio, e.g., in the Euler or Aumann-Shapley framework, is given by the partial derivatives of a risk measure applied to the portfolio profit and loss in direction of the asset units. For risk measures that are not positively homogeneous of degree 1, however, known capital allocation principles do not apply. We study the class of lambda quantile risk measures that includes the well-known Value-at-Risk as a special case but for which no known allocation rule is applicable. We prove differentiability and derive explicit formulae of the derivatives of lambda quantiles with respect to their portfolio composition, that is their risk contribution. For this purpose, we define lambda quantiles on the space of portfolio compositions and consider generic (also non-linear) portfolio operators. We further derive the Euler decomposition of lambda quantiles for generic portfolios and show that lambda quantiles are homogeneous in the space of portfolio compositions, with a homogeneity degree that depends on the portfolio composition and the lambda function. This result is in stark contrast to the positive homogeneity properties of risk measures defined on the space of random variables which admit a constant homogeneity degree. We introduce a generalised version of Euler contributions and Euler allocation rule, which are compatible with risk measures of any homogeneity degree and non-linear but homogeneous portfolios. These concepts are illustrated by a non-linear portfolio using financial market data.

Suggested Citation

  • Akif Ince & Ilaria Peri & Silvana Pesenti, 2021. "Risk contributions of lambda quantiles," Papers 2106.14824, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2106.14824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.14824
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winfried G. Hallerbach, 1999. "Decomposing Portfolio Value-at-Risk: A General Analysis," Tinbergen Institute Discussion Papers 99-034/2, Tinbergen Institute.
    2. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
    3. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    4. Jacopo Corbetta & Ilaria Peri, 2018. "Backtesting lambda value at risk," The European Journal of Finance, Taylor & Francis Journals, vol. 24(13), pages 1075-1087, September.
    5. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    8. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    9. Dirk Tasche, 2001. "Conditional Expectation as Quantile Derivative," Papers math/0104190, arXiv.org.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Asmerilda Hitaj & Cesario Mateus & Ilaria Peri, 2018. "Lambda Value at Risk and Regulatory Capital: A Dynamic Approach to Tail Risk," Risks, MDPI, vol. 6(1), pages 1-18, March.
    12. Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
    13. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    14. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    15. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    16. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    17. Centrone, Francesca & Rosazza Gianin, Emanuela, 2018. "Capital allocation à la Aumann–Shapley for non-differentiable risk measures," European Journal of Operational Research, Elsevier, vol. 267(2), pages 667-675.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    2. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    3. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    4. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    5. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    6. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    7. Fabio Bellini & Ilaria Peri, 2021. "An axiomatization of $\Lambda$-quantiles," Papers 2109.02360, arXiv.org, revised Jan 2022.
    8. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    9. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    10. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    11. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    12. Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
    13. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org.
    14. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    15. Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
    16. Alexandre Kurth & Dirk Tasche, 2002. "Credit Risk Contributions to Value-at-Risk and Expected Shortfall," Papers cond-mat/0207750, arXiv.org, revised Nov 2002.
    17. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    18. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    19. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2020. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Papers 2003.05797, arXiv.org, revised Mar 2022.
    20. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.14824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.