IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.12886.html
   My bibliography  Save this paper

Constrained Classification and Policy Learning

Author

Listed:
  • Toru Kitagawa
  • Shosei Sakaguchi
  • Aleksey Tetenov

Abstract

Modern machine learning approaches to classification, including AdaBoost, support vector machines, and deep neural networks, utilize surrogate loss techniques to circumvent the computational complexity of minimizing empirical classification risk. These techniques are also useful for causal policy learning problems, since estimation of individualized treatment rules can be cast as a weighted (cost-sensitive) classification problem. Consistency of the surrogate loss approaches studied in Zhang (2004) and Bartlett et al. (2006) crucially relies on the assumption of correct specification, meaning that the specified set of classifiers is rich enough to contain a first-best classifier. This assumption is, however, less credible when the set of classifiers is constrained by interpretability or fairness, leaving the applicability of surrogate loss based algorithms unknown in such second-best scenarios. This paper studies consistency of surrogate loss procedures under a constrained set of classifiers without assuming correct specification. We show that in the setting where the constraint restricts the classifier's prediction set only, hinge losses (i.e., $\ell_1$-support vector machines) are the only surrogate losses that preserve consistency in second-best scenarios. If the constraint additionally restricts the functional form of the classifier, consistency of a surrogate loss approach is not guaranteed even with hinge loss. We therefore characterize conditions for the constrained set of classifiers that can guarantee consistency of hinge risk minimizing classifiers. Exploiting our theoretical results, we develop robust and computationally attractive hinge loss based procedures for a monotone classification problem.

Suggested Citation

  • Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2106.12886
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.12886
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Nathan Kallus, 2021. "More Efficient Policy Learning via Optimal Retargeting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 646-658, April.
    3. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    4. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
    5. Ashesh Rambachan & Jon Kleinberg & Sendhil Mullainathan & Jens Ludwig, 2020. "An Economic Approach to Regulating Algorithms," NBER Working Papers 27111, National Bureau of Economic Research, Inc.
    6. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    7. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    8. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    9. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    10. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    11. Yichi Zhang & Eric B. Laber & Marie Davidian & Anastasios A. Tsiatis, 2018. "Interpretable Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1541-1549, October.
    12. Lieli, Robert P. & White, Halbert, 2010. "The construction of empirical credit scoring rules based on maximization principles," Journal of Econometrics, Elsevier, vol. 157(1), pages 110-119, July.
    13. Manski, Charles F. & Thompson, T. Scott, 1989. "Estimation of best predictors of binary response," Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
    14. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    15. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    16. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    17. Ying-Qi Zhao & Donglin Zeng & Eric B. Laber & Michael R. Kosorok, 2015. "New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 583-598, June.
    18. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    20. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    21. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    22. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    23. Gao, Fuchang & Wellner, Jon A., 2007. "Entropy estimate for high-dimensional monotonic functions," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1751-1764, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    2. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    3. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    4. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org.
    5. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org.
    3. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    4. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    5. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    6. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    7. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    8. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers 10/15, Institute for Fiscal Studies.
    10. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    11. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    12. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    13. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    14. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    15. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Feb 2024.
    16. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    17. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    18. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    19. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised Dec 2023.
    20. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.12886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.