IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.12050.html
   My bibliography  Save this paper

Hybrid quantum-classical optimization for financial index tracking

Author

Listed:
  • Samuel Fern'andez-Lorenzo
  • Diego Porras
  • Juan Jos'e Garc'ia-Ripoll

Abstract

Tracking a financial index boils down to replicating its trajectory of returns for a well-defined time span by investing in a weighted subset of the securities included in the benchmark. Picking the optimal combination of assets becomes a challenging NP-hard problem even for moderately large indices consisting of dozens or hundreds of assets, thereby requiring heuristic methods to find approximate solutions. Hybrid quantum-classical optimization with variational gate-based quantum circuits arises as a plausible method to improve performance of current schemes. In this work we introduce a heuristic pruning algorithm to find weighted combinations of assets subject to cardinality constraints. We further consider different strategies to respect such constraints and compare the performance of relevant quantum ans\"{a}tze and classical optimizers through numerical simulations.

Suggested Citation

  • Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2008.12050
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.12050
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilli, Manfred & Maringer, Dietmar & Schumann, Enrico, 2011. "Numerical Methods and Optimization in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780123756626.
    2. Juan Francisco Monge, 2017. "Cardinality constrained portfolio selection via factor models," Papers 1708.02424, arXiv.org.
    3. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    4. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    5. Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
    6. Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
    7. Abhinav Kandala & Antonio Mezzacapo & Kristan Temme & Maika Takita & Markus Brink & Jerry M. Chow & Jay M. Gambetta, 2017. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, Nature, vol. 549(7671), pages 242-246, September.
    8. Iordanis Kerenidis & Anupam Prakash & D'aniel Szil'agyi, 2019. "Quantum Algorithms for Portfolio Optimization," Papers 1908.08040, arXiv.org.
    9. Roman Orus & Samuel Mugel & Enrique Lizaso, 2018. "Forecasting financial crashes with quantum computing," Papers 1810.07690, arXiv.org, revised Jun 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    2. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    4. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    5. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    6. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    7. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    8. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    9. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    10. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.
    11. Wu, Dexiang & Kwon, Roy H. & Costa, Giorgio, 2017. "A constrained cluster-based approach for tracking the S&P 500 index," International Journal of Production Economics, Elsevier, vol. 193(C), pages 222-243.
    12. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
    13. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    14. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org.
    15. Samuel Mugel & Enrique Lizaso & Roman Orus, 2020. "Use Cases of Quantum Optimization for Finance," Papers 2010.01312, arXiv.org.
    16. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    17. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    18. Marc S. Paolella, 2014. "Fast Methods For Large-Scale Non-Elliptical Portfolio Optimization," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-32.
    19. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    20. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.12050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.