IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.13972.html
   My bibliography  Save this paper

Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk

Author

Listed:
  • Young Shin Kim

Abstract

In this paper, we propose a market model with returns assumed to follow a multivariate normal tempered stable distribution defined by a mixture of the multivariate normal distribution and the tempered stable subordinator. This distribution is able to capture two stylized facts: fat-tails and asymmetry, that have been empirically observed for asset return distributions. On the new market model, we discuss a new portfolio optimization method, which is an extension of Markowitz's mean-variance optimization. The new optimization method considers not only reward and dispersion but also asymmetry. The efficient frontier is also extended to a curved surface on three-dimensional space of reward, dispersion, and asymmetry. We also propose a new performance measure which is an extension of the Sharpe Ratio. Moreover, we derive closed-form solutions for two important measures used by portfolio managers in portfolio construction: the marginal Value-at-Risk (VaR) and the marginal Conditional VaR (CVaR). We illustrate the proposed model using stocks comprising the Dow Jones Industrial Average. First, perform the new portfolio optimization and then demonstrating how the marginal VaR and marginal CVaR can be used for portfolio optimization under the model. Based on the empirical evidence presented in this paper, our framework offers realistic portfolio optimization and tractable methods for portfolio risk management.

Suggested Citation

  • Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
  • Handle: RePEc:arx:papers:2007.13972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.13972
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
    2. Ernst Eberlein & Kathrin Glau, 2014. "Variational Solutions of the Pricing PIDEs for European Options in Lévy Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(5), pages 417-450, November.
    3. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    4. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    5. O.E. Barndorff-Nielsen & S.Z. Levendorskii, 2001. "Feller processes of normal inverse Gaussian type," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 318-331, March.
    6. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    7. Stoyan Stoyanov & Svetlozar Rachev & Frank Fabozzi, 2013. "Sensitivity of portfolio VaR and CVaR to portfolio return characteristics," Annals of Operations Research, Springer, vol. 205(1), pages 169-187, May.
    8. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    9. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    12. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    13. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    14. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    15. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    2. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    3. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    4. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    5. Sung Ik Kim & Young Shin Kim, 2018. "Tempered stable structural model in pricing credit spread and credit default swap," Review of Derivatives Research, Springer, vol. 21(1), pages 119-148, April.
    6. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    7. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    8. Kim, Sung Ik, 2023. "A comparative study of firm value models: Default risk of corporate bonds," Finance Research Letters, Elsevier, vol. 56(C).
    9. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    10. Shao, Barret Pengyuan & Rachev, Svetlozar T. & Mu, Yu, 2015. "Applied mean-ETL optimization in using earnings forecasts," International Journal of Forecasting, Elsevier, vol. 31(2), pages 561-567.
    11. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    12. Holger Fink & Stefan Mittnik, 2021. "Quanto Pricing beyond Black–Scholes," JRFM, MDPI, vol. 14(3), pages 1-27, March.
    13. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    14. Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
    15. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    16. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    17. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    18. Tetsuo Kurosaki & Young Shin Kim, 2020. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Papers 2010.08900, arXiv.org.
    19. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    20. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.13972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.