IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.12784.html
   My bibliography  Save this paper

The probability of a robust inference for internal validity and its applications in regression models

Author

Listed:
  • Tenglong Li
  • Kenneth A. Frank

Abstract

The internal validity of observational study is often subject to debate. In this study, we define the unobserved sample based on the counterfactuals and formalize its relationship with the null hypothesis statistical testing (NHST) for regression models. The probability of a robust inference for internal validity, i.e., the PIV, is the probability of rejecting the null hypothesis again based on the ideal sample which is defined as the combination of the observed and unobserved samples, provided the same null hypothesis has already been rejected for the observed sample. When the unconfoundedness assumption is dubious, one can bound the PIV of an inference based on bounded belief about the mean counterfactual outcomes, which is often needed in this case. Essentially, the PIV is statistical power of the NHST that is thought to be built on the ideal sample. We summarize the process of evaluating internal validity with the PIV into a six-step procedure and illustrate it with an empirical example (i.e., Hong and Raudenbush (2005)).

Suggested Citation

  • Tenglong Li & Kenneth A. Frank, 2020. "The probability of a robust inference for internal validity and its applications in regression models," Papers 2005.12784, arXiv.org.
  • Handle: RePEc:arx:papers:2005.12784
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.12784
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "An Evaluation of Instrumental Variable Strategies for Estimating the Effects of Catholic Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 40(4), pages 791-821.
    3. Tyler J. VanderWeele, 2008. "Sensitivity Analysis: Distributional Assumptions and Confounding Assumptions," Biometrics, The International Biometric Society, vol. 64(2), pages 645-649, June.
    4. Matthew A. Masten & Alexandre Poirier, 2018. "Identification of Treatment Effects Under Conditional Partial Independence," Econometrica, Econometric Society, vol. 86(1), pages 317-351, January.
    5. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    6. Kosuke Imai & Gary King & Elizabeth A. Stuart, 2008. "Misunderstandings between experimentalists and observationalists about causal inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 481-502, April.
    7. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    8. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    9. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    10. Tenglong Li & Kenneth A. Frank, 2019. "On the probability of a causal inference is robust for internal validity," Papers 1906.08726, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenglong Li & Kenneth A. Frank & Mingming Chen, 2024. "A Conceptual Framework for Quantifying the Robustness of a Regression-Based Causal Inference in Observational Study," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
    2. Tenglong Li & Kenneth A. Frank, 2019. "On the probability of a causal inference is robust for internal validity," Papers 1906.08726, arXiv.org.
    3. Tenglong Li & Ken Frank, 2022. "The probability of a robust inference for internal validity," Sociological Methods & Research, , vol. 51(4), pages 1947-1968, November.
    4. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    5. Pablo Geraldo Bast'ias, 2024. "Credible causal inference beyond toy models," Papers 2402.11659, arXiv.org.
    6. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    7. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    8. Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
    9. Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
    10. Matthew A. Masten & Alexandre Poirier & Linqi Zhang, 2024. "Assessing Sensitivity to Unconfoundedness: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 1-13, January.
    11. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    12. Carlos A. Flores & Alfonso Flores-Lagunes, 2007. "Identification and Estimation of Casual Mechanisms and Net Effects of a Treatment," Working Papers 0706, University of Miami, Department of Economics.
    13. Tenglong Li & Jordan Lawson, 2021. "A generalized bootstrap procedure of the standard error and confidence interval estimation for inverse probability of treatment weighting," Papers 2109.00171, arXiv.org.
    14. Luke Keele & Stephen O’Neill & Richard Grieve, 2021. "Comparing the Performance of Statistical Adjustment Methods by Recovering the Experimental Benchmark from the REFLUX Trial," Medical Decision Making, , vol. 41(3), pages 340-353, April.
    15. Gregory N. Price & Chris W. Surprenant, 2022. "The Treatment Effect of Business Education on the Supply of High School Entrepreneurs in Atlanta and New Orleans," The American Economist, Sage Publications, vol. 67(1), pages 85-98, March.
    16. Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
    17. Tang, Chuan & Heintzelman, Martin D. & Holsen, Thomas M., 2018. "Mercury pollution, information, and property values," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 418-432.
    18. Brian G. Vegetabile & Daniel L. Gillen & Hal S. Stern, 2020. "Optimally balanced Gaussian process propensity scores for estimating treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 355-377, January.
    19. Matt Taddy & Matt Gardner & Liyun Chen & David Draper, 2016. "A Nonparametric Bayesian Analysis of Heterogenous Treatment Effects in Digital Experimentation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 661-672, October.
    20. Franz R. Hahn & Werner Hölzl & Claudia Kwapil, 2016. "The Credit Channel and the Role of Monetary Policy Before, During and After the Global Financial Crisis. A Micro Data Approach to the Analysis of Bank-firm Relationships," WIFO Studies, WIFO, number 59233, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.12784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.