IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.06586.html
   My bibliography  Save this paper

Targetting Kollo Skewness with Random Orthogonal Matrix Simulation

Author

Listed:
  • Carol Alexander
  • Xiaochun Meng
  • Wei Wei

Abstract

Modelling multivariate systems is important for many applications in engineering and operational research. The multivariate distributions under scrutiny usually have no analytic or closed form. Therefore their modelling employs a numerical technique, typically multivariate simulations, which can have very high dimensions. Random Orthogonal Matrix (ROM) simulation is a method that has gained some popularity because of the absence of certain simulation errors. Specifically, it exactly matches a target mean, covariance matrix and certain higher moments with every simulation. This paper extends the ROM simulation algorithm presented by Hanke et al. (2017), hereafter referred to as HPSW, which matches the target mean, covariance matrix and Kollo skewness vector exactly. Our first contribution is to establish necessary and sufficient conditions for the HPSW algorithm to work. Our second contribution is to develop a general approach for constructing admissible values in the HPSW. Our third theoretical contribution is to analyse the effect of multivariate sample concatenation on the target Kollo skewness. Finally, we illustrate the extensions we develop here using a simulation study.

Suggested Citation

  • Carol Alexander & Xiaochun Meng & Wei Wei, 2020. "Targetting Kollo Skewness with Random Orthogonal Matrix Simulation," Papers 2004.06586, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2004.06586
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.06586
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    2. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    3. Gutjahr, Steffen & Henze, Norbert & Folkers, Martin, 1999. "Shortcomings of Generalized Affine Invariant Skewness Measures," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 1-23, October.
    4. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    5. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    6. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-Arbitrage ROM simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 66-79.
    7. Carol Alexander & Daniel Ledermann, 2012. "ROM Simulation: Applications to Stress Testing and VaR," ICMA Centre Discussion Papers in Finance icma-dp2012-09, Henley Business School, University of Reading.
    8. Luca Capriotti, 2008. "Least-squares Importance Sampling for Monte Carlo security pricing," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 485-497.
    9. Ledermann, Daniel & Alexander, Carol, 2012. "Further properties of random orthogonal matrix simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 56-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Carol & Meng, Xiaochun & Wei, Wei, 2022. "Targeting Kollo skewness with random orthogonal matrix simulation," European Journal of Operational Research, Elsevier, vol. 299(1), pages 362-376.
    2. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    4. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    5. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    8. André Felipe Azevedo Neves & Denise Britz do Nascimento Silva & Fernando Antônio da Silva Moura, 2020. "Skew normal small area time models for the Brazilian annual service sector survey," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 84-102, August.
    9. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    10. Jonas Baillien & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible asymmetric multivariate distributions based on two-piece univariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 159-200, February.
    11. Margus Pihlak, 2014. "Modelling of Skewness Measure Distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 145-152, January.
    12. Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169537, HAL.
    13. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    14. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    15. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    16. Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Documents de travail du Centre d'Economie de la Sorbonne 15052, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Fernando A. S. Moura & André Felipe Neves & Denise Britz do N. Silva, 2017. "Small area models for skewed Brazilian business survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1039-1055, October.
    18. Philippe Andrade & Filippo Ferroni & Leonardo Melosi, 2023. "Identification Using Higher-Order Moments Restrictions," Working Paper Series WP 2023-28, Federal Reserve Bank of Chicago.
    19. Azevedo Neves André Felipe & Nascimento Silva Denise Britz do & Silva Moura Fernando Antônio da, 2020. "Skew normal small area time models for the Brazilian annual service sector survey," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 84-102, August.
    20. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2020. "Edgeworth Expansions for Multivariate Random Sums," Working Papers 2020:9, Örebro University, School of Business.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.06586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.