IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.03000.html
   My bibliography  Save this paper

Dynamic Influence on Replicator Evolution for the Propagation of Competing Technologies

Author

Listed:
  • Elijah D. Bolluyt
  • Cristina Comaniciu

Abstract

This work introduces a novel modified Replicator Dynamics model, which includes external influences on the population. This framework models a realistic market into which companies, the external dynamic influences, invest resources in order to bolster their product's standing and increase their market share. The dynamic influences change in each time step of the game, and directly modify the payoff matrix of the population's interactions. The model can learn from real data how each influence affects the market, and can be used to simulate and predict the outcome of a real system. We specifically analyze how a new technology can compete and attempt to unseat an entrenched technology as the market leader. We establish a relationship between the external influences and the population payoff matrix and show how the system can be implemented to predict outcomes in a real market by simulating the rise of the Android mobile operating system over its primary competition, the iPhone, from 2009 to 2017.

Suggested Citation

  • Elijah D. Bolluyt & Cristina Comaniciu, 2019. "Dynamic Influence on Replicator Evolution for the Propagation of Competing Technologies," Papers 1911.03000, arXiv.org.
  • Handle: RePEc:arx:papers:1911.03000
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.03000
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, December.
    2. Unknown, 2002. "Letters to the Editor," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 17(4), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    2. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    3. Nureya Abarca & Nicolás Majluf, 2003. "Women In Management: A Study Of Chilean Executives," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 6(1), pages 55-81.
    4. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    5. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    6. Sandholm, William H. & Izquierdo, Segismundo S. & Izquierdo, Luis R., 2019. "Best experienced payoff dynamics and cooperation in the Centipede game," Theoretical Economics, Econometric Society, vol. 14(4), November.
    7. Anirban Ghatak & K. Mallikarjuna Rao & A. Shaiju, 2012. "Evolutionary Stability Against Multiple Mutations," Dynamic Games and Applications, Springer, vol. 2(4), pages 376-384, December.
    8. Lenzo, Justin & Sarver, Todd, 2006. "Correlated equilibrium in evolutionary models with subpopulations," Games and Economic Behavior, Elsevier, vol. 56(2), pages 271-284, August.
    9. Patrick Kane & Kevin J S Zollman, 2015. "An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    10. Aradhana Narang & A. J. Shaiju, 2019. "Evolutionary Stability of Polymorphic Profiles in Asymmetric Games," Dynamic Games and Applications, Springer, vol. 9(4), pages 1126-1142, December.
    11. Fabio Lamantia & Mario Pezzino & Fabio Tramontana, 2017. "Tax Evasion, Intrinsic Motivation, and the Evolutionary Effects of Tax Reforms," Economics Discussion Paper Series 1707, Economics, The University of Manchester.
    12. Han, The Anh & Traulsen, Arne & Gokhale, Chaitanya S., 2012. "On equilibrium properties of evolutionary multi-player games with random payoff matrices," Theoretical Population Biology, Elsevier, vol. 81(4), pages 264-272.
    13. Zibo Xu, 2013. "The instability of backward induction in evolutionary dynamics," Discussion Paper Series dp633, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    14. Bezin, Emeline & Ponthière, Gregory, 2019. "The tragedy of the commons and socialization: Theory and policy," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    15. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    16. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2009. "The Refined Best-Response Correspondence and Backward Induction," Levine's Working Paper Archive 814577000000000248, David K. Levine.
    17. Jacek Miȩkisz & Sergiusz Wesołowski, 2011. "Stochasticity and Time Delays in Evolutionary Games," Dynamic Games and Applications, Springer, vol. 1(3), pages 440-448, September.
    18. Takuya Sekiguchi & Hisashi Ohtsuki, 2017. "Fixation Probabilities of Strategies for Bimatrix Games in Finite Populations," Dynamic Games and Applications, Springer, vol. 7(1), pages 93-111, March.
    19. Silvia Nenci, 2009. "Tariff liberatization and the growth of word trade: A comparative historiocal analysis to evaluate the multilateral trading system," Departmental Working Papers of Economics - University 'Roma Tre' 0110, Department of Economics - University Roma Tre.
    20. Anufriev, Mikhail & Kopányi, Dávid & Tuinstra, Jan, 2013. "Learning cycles in Bertrand competition with differentiated commodities and competing learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2562-2581.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.03000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.