IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.11424.html
   My bibliography  Save this paper

Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Markets

Author

Listed:
  • David M. Kreps
  • Walter Schachermayer

Abstract

We examine Kreps' (2019) conjecture that optimal expected utility in the classic Black--Scholes--Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that "approach" the BSM economy in a natural sense: The $n$th discrete-time economy is generated by a scaled $n$-step random walk, based on an unscaled random variable $\zeta$ with mean zero, variance one, and bounded support. We confirm Kreps' conjecture if the consumer's utility function $U$ has asymptotic elasticity strictly less than one, and we provide a counterexample to the conjecture for a utility function $U$ with asymptotic elasticity equal to 1, for $\zeta$ such that $E[\zeta^3] > 0.$

Suggested Citation

  • David M. Kreps & Walter Schachermayer, 2019. "Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Markets," Papers 1907.11424, arXiv.org, revised Feb 2020.
  • Handle: RePEc:arx:papers:1907.11424
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.11424
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Christian Reichlin, 2016. "Behavioral Portfolio Selection: Asymptotics And Stability Along A Sequence Of Models," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 51-85, January.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. He, Hua, 1991. "Optimal consumption-portfolio policies: A convergence from discrete to continuous time models," Journal of Economic Theory, Elsevier, vol. 55(2), pages 340-363, December.
    7. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    8. Erhan Bayraktar & Yan Dolinsky & Jia Guo, 2018. "Continuity of Utility Maximization under Weak Convergence," Papers 1811.01420, arXiv.org, revised Jun 2020.
    9. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    10. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    12. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    13. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    14. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich Hubalek & Walter Schachermayer, 2021. "Convergence of optimal expected utility for a sequence of binomial models," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1315-1331, October.
    2. Friedrich Hubalek & Walter Schachermayer, 2020. "Convergence of Optimal Expected Utility for a Sequence of Binomial Models," Papers 2009.09751, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich Hubalek & Walter Schachermayer, 2021. "Convergence of optimal expected utility for a sequence of binomial models," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1315-1331, October.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Wolfgang Stummer, 2002. "Some Potential Means for Venture Valuation," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 7(3), pages 39-52, Fall.
    6. repec:dau:papers:123456789/5374 is not listed on IDEAS
    7. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    8. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    9. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    10. Erhan Bayraktar & Yan Dolinsky & Jia Guo, 2018. "Continuity of Utility Maximization under Weak Convergence," Papers 1811.01420, arXiv.org, revised Jun 2020.
    11. Carpenter, Jennifer N. & Stanton, Richard & Wallace, Nancy, 2010. "Optimal exercise of executive stock options and implications for firm cost," Journal of Financial Economics, Elsevier, vol. 98(2), pages 315-337, November.
    12. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    13. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    14. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    15. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    16. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    17. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    18. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    19. Hui Chen & Jianjun Miao & Neng Wang, 2010. "Entrepreneurial Finance and Nondiversifiable Risk," The Review of Financial Studies, Society for Financial Studies, vol. 23(12), pages 4348-4388, December.
    20. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    21. Huhtala, Heli, 2008. "Along but beyond mean-variance: Utility maximization in a semimartingale model," Bank of Finland Research Discussion Papers 5/2008, Bank of Finland.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.11424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.