IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.06000.html
   My bibliography  Save this paper

An agent-based model for designing a financial market that works well

Author

Listed:
  • Takanobu Mizuta

Abstract

Designing a financial market that works well is very important for developing and maintaining an advanced economy, but is not easy because changing detailed rules, even ones that seem trivial, sometimes causes unexpected large impacts and side effects. A computer simulation using an agent-based model can directly treat and clearly explain such complex systems where micro processes and macro phenomena interact. Many effective agent-based models investigating human behavior have already been developed. Recently, an artificial market model, which is an agent-based model for a financial market, has started to contribute to discussions on rules and regulations of actual financial markets. I introduce an artificial market model to design financial markets that work well and describe a previous study investigating tick size reduction. I hope that more artificial market models will contribute to designing financial markets that work well to further develop and maintain advanced economies.

Suggested Citation

  • Takanobu Mizuta, 2019. "An agent-based model for designing a financial market that works well," Papers 1906.06000, arXiv.org.
  • Handle: RePEc:arx:papers:1906.06000
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.06000
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thierry Foucault & Albert J. Menkveld, 2008. "Competition for Order Flow and Smart Order Routing Systems," Journal of Finance, American Finance Association, vol. 63(1), pages 119-158, February.
    2. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    3. Braun-Munzinger, Karen & Liu, Zijun & Turrell, Arthur, 2016. "An agent-based model of dynamics in corporate bond trading," Bank of England working papers 592, Bank of England.
    4. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    5. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    6. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    7. Vince Darley & Alexander V Outkin, 2007. "A NASDAQ Market Simulation:Insights on a Major Market from the Science of Complex Adaptive Systems," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masanori Hirano & Ryosuke Takata & Kiyoshi Izumi, 2023. "PAMS: Platform for Artificial Market Simulations," Papers 2309.10729, arXiv.org.
    2. Masanori Hirano & Kiyoshi Izumi & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Comparing Actual and Simulated HFT Traders' Behavior for Agent Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-6.
    3. Masanori Hirano & Hiroki Sakaji & Kiyoshi Izumi, 2022. "Policy Gradient Stock GAN for Realistic Discrete Order Data Generation in Financial Markets," Papers 2204.13338, arXiv.org.
    4. Masanori Hirano & Kiyoshi Izumi & Takashi Shimada & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Impact Analysis of Financial Regulation on Multi-Asset Markets Using Artificial Market Simulations," JRFM, MDPI, vol. 13(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    2. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    3. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    4. Takanobu Mizuta, 2022. "Do new investment strategies take existing strategies' returns -- An investigation into agent-based models," Papers 2202.01423, arXiv.org.
    5. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    6. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    7. Takanobu Mizuta & Isao Yagi, 2023. "Comparing effects of price limit and circuit breaker in stock exchanges by an agent-based model," Papers 2309.10220, arXiv.org.
    8. Masanori Hirano & Kiyoshi Izumi & Takashi Shimada & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Impact Analysis of Financial Regulation on Multi-Asset Markets Using Artificial Market Simulations," JRFM, MDPI, vol. 13(4), pages 1-20, April.
    9. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    10. Takanobu Mizuta & Isao Yagi & Kosei Takashima, 2022. "Instability of financial markets by optimizing investment strategies investigated by an agent-based model," Papers 2202.00831, arXiv.org.
    11. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    12. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    13. Firouzi, Shahrokh & Wang, Xiangning, 2019. "A comparative study of exchange rates and order flow based on wavelet transform coherence and cross wavelet transform," Economic Modelling, Elsevier, vol. 82(C), pages 42-56.
    14. Yamamoto, Ryuichi & Hirata, Hideaki, 2013. "Strategy switching in the Japanese stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 2010-2022.
    15. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    16. Masanori Hirano & Kiyoshi Izumi & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Comparing Actual and Simulated HFT Traders' Behavior for Agent Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-6.
    17. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    18. Fabio Tramontana, 2013. "The role of cognitively biased imitators in a small scale agent-based financial market," DEM Working Papers Series 029, University of Pavia, Department of Economics and Management.
    19. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    20. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.06000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.