IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.07911.html
   My bibliography  Save this paper

Computational Methods for Martingale Optimal Transport problems

Author

Listed:
  • Gaoyue Guo
  • Jan Obloj

Abstract

We establish numerical methods for solving the martingale optimal transport problem (MOT) - a version of the classical optimal transport with an additional martingale constraint on transport's dynamics. We prove that the MOT value can be approximated using linear programming (LP) problems which result from a discretisation of the marginal distributions combined with a suitable relaxation of the martingale constraint. Specialising to dimension one, we provide bounds on the convergence rate of the above scheme. We also show a stability result under only partial specification of the marginal distributions. Finally, we specialise to a particular discretisation scheme which preserves the convex ordering and does not require the martingale relaxation. We introduce an entropic regularisation for the corresponding LP problem and detail the corresponding iterative Bregman projection. We also rewrite its dual problem as a minimisation problem without constraint and solve it by computing the concave envelope of scattered data.

Suggested Citation

  • Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
  • Handle: RePEc:arx:papers:1710.07911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.07911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    2. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    3. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    4. Aur'elien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2017. "Sampling of probability measures in the convex order by Wasserstein projection," Papers 1709.05287, arXiv.org, revised Feb 2019.
    5. Tongseok Lim, 2014. "Optimal martingale transport between radially symmetric marginals in general dimensions," Papers 1412.3530, arXiv.org, revised Feb 2018.
    6. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    7. Zhaoxu Hou & Jan Obloj, 2015. "On robust pricing-hedging duality in continuous time," Papers 1503.02822, arXiv.org, revised Jul 2015.
    8. Aurélien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2017. "Sampling of probability measures in the convex order and approximation of Martingale Optimal Transport problems," Working Papers hal-01589581, HAL.
    9. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    10. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    11. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    12. J. Frederic Bonnans & Xiaolu Tan, 2013. "A model-free no-arbitrage price bound for variance options," Post-Print inria-00634387, HAL.
    13. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    14. Haydyn Brown & David Hobson & L. C. G. Rogers, 2001. "Robust Hedging of Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 285-314, July.
    15. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2013. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    16. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    17. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    18. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    19. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    20. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    2. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    3. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    4. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    5. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    6. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    7. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    8. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    9. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    10. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    11. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    12. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    13. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    14. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    15. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    16. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    17. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    18. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    19. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    20. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.07911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.