IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.01141.html
   My bibliography  Save this paper

A series representation for the Black-Scholes formula

Author

Listed:
  • Jean-Philippe Aguilar

Abstract

We prove and test an efficient series representation for the European Black-Scholes call, which generalizes and refines previously known approximations, and works in every market configuration.

Suggested Citation

  • Jean-Philippe Aguilar, 2017. "A series representation for the Black-Scholes formula," Papers 1710.01141, arXiv.org, revised Oct 2017.
  • Handle: RePEc:arx:papers:1710.01141
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.01141
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleinert, H. & Korbel, J., 2016. "Option pricing beyond Black–Scholes based on double-fractional diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 200-214.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Hagen Kleinert & Jan Korbel, 2015. "Option Pricing Beyond Black-Scholes Based on Double-Fractional Diffusion," Papers 1503.05655, arXiv.org, revised Mar 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2019. "An analytical perturbative solution to the Merton Garman model using symmetries," Papers 1909.01413, arXiv.org, revised Jan 2021.
    2. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan M. Romero & Ilse B. Zubieta-Mart'inez, 2016. "Relativistic Quantum Finance," Papers 1604.01447, arXiv.org.
    2. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2016. "Non-Gaussian analytic option pricing: a closed formula for the L\'evy-stable model," Papers 1609.00987, arXiv.org, revised Nov 2017.
    3. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    4. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.
    5. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Olkhov, Victor, 2020. "Classical Option Pricing and Some Steps Further," MPRA Paper 105431, University Library of Munich, Germany, revised 28 Dec 2020.
    7. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    8. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    9. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    10. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    11. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    12. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Alghalith, Moawia, 2020. "Pricing options under simultaneous stochastic volatility and jumps: A simple closed-form formula without numerical/computational methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Melek AKSU & Şakir SAKARYA, 2018. "Pricing of Covered Warrants: An Analysis on Borsa İstanbul," Sosyoekonomi Journal, Sosyoekonomi Society.
    15. Jean-Philippe Aguilar & Cyril Coste & Hagen Kleinert & Jan Korbel, 2016. "Regularization and analytic option pricing under $\alpha$-stable distribution of arbitrary asymmetry," Papers 1611.04320, arXiv.org, revised Nov 2016.
    16. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    17. Hinderks, W.J. & Wagner, A., 2019. "Pricing German Energiewende products: Intraday cap/floor futures," Energy Economics, Elsevier, vol. 81(C), pages 287-296.
    18. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    19. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    20. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.01141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.