IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.05911.html
   My bibliography  Save this paper

Food Productivity Trends from Hybrid Corn: Statistical Analysis of Patents and Field-test data

Author

Listed:
  • Mariam Barry
  • Giorgio Triulzi
  • Christopher L. Magee

Abstract

In this research we study productivity trends of hybrid corn - an important subdomain of food production. We estimate the yearly rate of yield improvement of hybrid corn (measured as bushel per acre) by using both information on yields contained in US patent documents for patented hybrid corn varieties and on field-test data of several hybrid corn varieties performed at US State level. We have used a generalization of Moore's law to fit productivity trends and obtain the performance improvement rate by analyzing time series of hybrid corn performance for a period covering the last thirty years. The linear regressions results obtained from different data sources indicate that the estimated improvement rates per year are between 1.2 and 2.4 percent. In particular, using yields reported in a sample of patents filed between 1985 and 2010, we estimated an improvement rate of 0.015 (R2 = 0.74, Pvalue = 1.37 x 10^-8). Moreover, we apply two predicting models developed by Benson and Magee (2015) and Triulzi and Magee (2016) that only use patent metadata to estimate the rate of improvement. We compare these predicted values to the rate estimated using US States field-test data. We find that, due to a turning point in patenting practices which begun in 2008, only the predicted rate (rate = 0.015) using patents filed before 2008 is consistent with the empirical rate. Finally, we also investigate at the micro level - on the basis of 70 patents (granted between 1986 and 2015) - whether the number of citations received by a patent is correlated with performance achieved by the patented variety. We find that the relative performance (yield ratio) of the patented seed is positively correlated with the total number of citations received by the patent (until December 2015) but not the citations received within 3 years after the granted year, with the patent application year used as control variable.

Suggested Citation

  • Mariam Barry & Giorgio Triulzi & Christopher L. Magee, 2017. "Food Productivity Trends from Hybrid Corn: Statistical Analysis of Patents and Field-test data," Papers 1706.05911, arXiv.org.
  • Handle: RePEc:arx:papers:1706.05911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.05911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    2. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    3. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2015. "Patent Citations and the Size of the Inventive Step - Evidence from Hybrid Corn," NBER Working Papers 21443, National Bureau of Economic Research, Inc.
    4. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    5. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    6. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    3. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    4. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    5. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    6. Matthias Niggli & Christian Rutzer, 2023. "Digital technologies, technological improvement rates, and innovations “Made in Switzerland”," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-31, December.
    7. Annapoornima M. Subramanian & Moren Lévesque & Vareska van de Vrande, 2020. "“Pulling the Plug:” Time Allocation between Drug Discovery and Development Projects," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2851-2876, December.
    8. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    9. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
    10. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    11. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    12. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    13. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    14. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    15. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    16. Deyu Li & Floor Alkemade & Koen Frenken & Gaston Heimeriks, 2023. "Catching up in clean energy technologies: a patent analysis," The Journal of Technology Transfer, Springer, vol. 48(2), pages 693-715, April.
    17. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    18. Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
    19. Whalen, Ryan, 2018. "Boundary spanning innovation and the patent system: Interdisciplinary challenges for a specialized examination system," Research Policy, Elsevier, vol. 47(7), pages 1334-1343.
    20. MAVRIDIS, Dimitrios & CSÉFALVAY, Zoltan & GKOTSIS, Petros & POTTERS, Lesley, 2021. "A Preliminary Index of SARS-CoV-2 Diagnostic Testing Patents," JRC Working Papers on Corporate R&D and Innovation 2020-07, Joint Research Centre.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.05911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.