IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.06616.html
   My bibliography  Save this paper

Shot-Noise Processes in Finance

Author

Listed:
  • Thorsten Schmidt

Abstract

Shot-Noise processes constitute a useful tool in various areas, in particular in finance. They allow to model abrupt changes in a more flexible way than processes with jumps and hence are an ideal tool for modelling stock prices, credit portfolio risk, systemic risk, or electricity markets. Here we consider a general formulation of shot-noise processes, in particular time-inhomogeneous shot-noise processes. This flexible class allows to obtain the Fourier transforms in explicit form and is highly tractable. We prove that Markovianity is equivalent to exponential decay of the noise function. Moreover, we study the relation to semimartingales and equivalent measure changes which are essential for the financial application. In particular we derive a drift condition which guarantees absence of arbitrage. Examples include the minimal martingale measure and the Esscher measure.

Suggested Citation

  • Thorsten Schmidt, 2016. "Shot-Noise Processes in Finance," Papers 1612.06616, arXiv.org.
  • Handle: RePEc:arx:papers:1612.06616
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.06616
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    2. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    3. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleksandra Putyatina & Jörn Sass, 2018. "Approximation for portfolio optimization in a financial market with shot-noise jumps," Computational Management Science, Springer, vol. 15(2), pages 161-186, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thorsten Schmidt, 2014. "Catastrophe Insurance Modeled by Shot-Noise Processes," Risks, MDPI, vol. 2(1), pages 1-22, February.
    2. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    3. Claude DIEBOLT & Tapas MISHRA & Mamata PARHI, 2015. "A "Jump" in the Stochasticity of the Solow-Swan Growth Model," Economies et Sociétés (Serie 'Histoire Economique Quantitative'), Association Française de Cliométrie (AFC), issue 50, pages 905-917, Juin.
    4. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    5. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    6. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    7. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    8. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2019. "Multiple Yield Curve Modelling with CBI Processes," Working Papers 19/2019, University of Verona, Department of Economics.
    9. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    10. Stéphane Crépey & Andrea Macrina & Tuyet Mai Nguyen & David Skovmand, 2016. "Rational multi-curve models with counterparty-risk valuation adjustments," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 847-866, June.
    11. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    12. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    13. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    14. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    15. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    16. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
    17. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    18. Atkins, Philip J. & Cummins, Mark, 2023. "Improved scalability and risk factor proxying with a two-step principal component analysis for multi-curve modelling," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1331-1348.
    19. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    20. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.06616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.