IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.04660.html
   My bibliography  Save this paper

Bayesian Dividend Optimization and Finite Time Ruin Probabilities

Author

Listed:
  • Gunther Leobacher
  • Michaela Szolgyenyi
  • Stefan Thonhauser

Abstract

We consider the valuation problem of an (insurance) company under partial information. Therefore we use the concept of maximizing discounted future dividend payments. The firm value process is described by a diffusion model with constant and observable volatility and constant but unknown drift parameter. For transforming the problem to a problem with complete information, we derive a suitable filter. The optimal value function is characterized as the unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation. We state a numerical procedure for approximating both the optimal dividend strategy and the corresponding value function. Furthermore, threshold strategies are discussed in some detail. Finally, we calculate the probability of ruin in the uncontrolled and controlled situation.

Suggested Citation

  • Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2016. "Bayesian Dividend Optimization and Finite Time Ruin Probabilities," Papers 1602.04660, arXiv.org.
  • Handle: RePEc:arx:papers:1602.04660
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.04660
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Villeneuve & Jean-Paul Descamps, 2007. "Optimal Dividend Policy and Growth Option," Post-Print hal-00173171, HAL.
    2. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    3. Jean-Paul Décamps & Stéphane Villeneuve, 2007. "Optimal dividend policy and growth option," Finance and Stochastics, Springer, vol. 11(1), pages 3-27, January.
    4. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    5. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    6. Hubalek, Friedrich & Schachermayer, Walter, 2004. "Optimizing expected utility of dividend payments for a Brownian risk process and a peculiar nonlinear ODE," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 193-225, April.
    7. Radner, Roy & Shepp, Larry, 1996. "Risk vs. profit potential: A model for corporate strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1373-1393, August.
    8. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    9. Gerber, Hans U., 1977. "On Optimal Cancellation of Policies," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 125-138, January.
    10. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    11. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    2. Michaela Szolgyenyi, 2016. "Dividend maximization in a hidden Markov switching model," Papers 1602.04656, arXiv.org.
    3. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    4. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    5. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    6. Jiang, Zhengjun, 2019. "Optimal dividend policy when risk reserves follow a jump–diffusion process with a completely monotone jump density under Markov-regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 1-7.
    7. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.
    8. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    9. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    10. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    11. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    12. Igor G. Pospelov & Stanislav A. Radionov, 2015. "Optimal Dividend Policy When Cash Surplus Follows The Telegraph Process," HSE Working papers WP BRP 48/FE/2015, National Research University Higher School of Economics.
    13. Décamps, Jean-Paul & Villeneuve, Stéphane, 2022. "Learning about profitability and dynamic cash management," Journal of Economic Theory, Elsevier, vol. 205(C).
    14. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    15. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    16. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    17. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    18. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.
    19. Etienne Chevalier & Vathana Ly Vath & Alexandre Roch, 2020. "Optimal Dividend and Capital Structure with Debt Covenants," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 535-565, November.
    20. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.04660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.