IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1505.04459.html
   My bibliography  Save this paper

Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity

Author

Listed:
  • Jos'e E. Figueroa-L'opez
  • Yankeng Luo

Abstract

In this article, we consider a Markov process X, starting from x and solving a stochastic differential equation, which is driven by a Brownian motion and an independent pure jump component exhibiting state-dependent jump intensity and infinite jump activity. A second order expansion is derived for the tail probability P[X(t)>x+y] in small time t, for y>0. As an application of this expansion and a suitable change of the underlying probability measure, a second order expansion, near expiration, for out-of-the-money European call option prices is obtained when the underlying stock price is modeled as the exponential of the jump-diffusion process X under the risk-neutral probability measure.

Suggested Citation

  • Jos'e E. Figueroa-L'opez & Yankeng Luo, 2015. "Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity," Papers 1505.04459, arXiv.org, revised Dec 2015.
  • Handle: RePEc:arx:papers:1505.04459
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1505.04459
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    2. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A family of density expansions for L\'evy-type processes," Papers 1312.7328, arXiv.org.
    3. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    4. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    5. Jos'e E. Figueroa-L'opez & Yankeng Luo & Cheng Ouyang, 2011. "Small-time expansions for local jump-diffusion models with infinite jump activity," Papers 1108.3386, arXiv.org, revised Jul 2014.
    6. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figueroa-López, José E. & Luo, Yankeng, 2018. "Small-time expansions for state-dependent local jump–diffusion models with infinite jump activity," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4207-4245.
    2. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    3. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    4. Lixin Wu & Fan Zhang, 2008. "Fast swaption pricing under the market model with a square-root volatility process," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 163-180.
    5. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    6. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    7. Antonis Papapantoleon & David Skovmand, 2010. "Numerical methods for the L\'evy LIBOR model," Papers 1006.3340, arXiv.org.
    8. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.
    9. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
    10. Antonis Papapantoleon & Maria Siopacha, 2009. "Strong Taylor approximation of stochastic differential equations and application to the L\'evy LIBOR model," Papers 0906.5581, arXiv.org, revised Oct 2010.
    11. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    12. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    13. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
    14. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    15. Antonis Papapantoleon & David Skovmand, 2010. "Picard Approximation of Stochastic Differential Equations and Application to Libor Models," CREATES Research Papers 2010-40, Department of Economics and Business Economics, Aarhus University.
    16. Antonis Papapantoleon & David Skovmand, 2010. "Picard approximation of stochastic differential equations and application to LIBOR models," Papers 1007.3362, arXiv.org, revised Jul 2011.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007.
    18. Bin Chen & Yongmiao Hong, 2013. "Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametri," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    19. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    20. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1505.04459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.