IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.00864.html
   My bibliography  Save this paper

Affine LIBOR models driven by real-valued affine processes

Author

Listed:
  • Stefan Waldenberger
  • Wolfgang Muller

Abstract

The class of affine LIBOR models is appealing since it satisfies three central requirements of interest rate modeling. It is arbitrage-free, interest rates are nonnegative and caplet and swaption prices can be calculated analytically. In order to guarantee nonnegative interest rates affine LIBOR models are driven by nonnegative affine processes, a restriction, which makes it hard to produce volatility smiles. We modify the affine LIBOR models in such a way that real-valued affine processes can be used without destroying the nonnegativity of interest rates. Numerical examples show that in this class of models pronounced volatility smiles are possible.

Suggested Citation

  • Stefan Waldenberger & Wolfgang Muller, 2015. "Affine LIBOR models driven by real-valued affine processes," Papers 1503.00864, arXiv.org.
  • Handle: RePEc:arx:papers:1503.00864
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.00864
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Zorana Grbac & Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2014. "Affine LIBOR models with multiple curves: theory, examples and calibration," Papers 1405.2450, arXiv.org, revised Aug 2015.
    3. Christa Cuchiero & Josef Teichmann, 2011. "Path properties and regularity of affine processes on general state spaces," Papers 1107.1607, arXiv.org, revised Jan 2013.
    4. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    5. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    6. Filipovic, Damir, 2005. "Time-inhomogeneous affine processes," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 639-659, April.
    7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Waldenberger, 2015. "The affine inflation market models," Papers 1503.04979, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    2. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    3. Roberto Baviera, 2017. "Back-of-the-envelope swaptions in a very parsimonious multicurve interest rate model," Papers 1712.06466, arXiv.org.
    4. Allan Jonathan da Silva & Jack Baczynskiy & José Valentim M. Vicente, 2015. "A Discrete Monitoring Method for Pricing Asian Interest Rate Options," Working Papers Series 409, Central Bank of Brazil, Research Department.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Roberto Baviera, 2019. "Back-Of-The-Envelope Swaptions In A Very Parsimonious Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-24, August.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Stefan Waldenberger, 2015. "The affine inflation market models," Papers 1503.04979, arXiv.org.
    9. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    10. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    11. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    12. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    13. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    14. Damiano Brigo & Naoufel El-Bachir, 2007. "An exact formula for default swaptions' pricing in the SSRJD stochastic intensity model," ICMA Centre Discussion Papers in Finance icma-dp2007-14, Henley Business School, University of Reading.
    15. Steven Heston, 2007. "A model of discontinuous interest rate behavior, yield curves, and volatility," Review of Derivatives Research, Springer, vol. 10(3), pages 205-225, December.
    16. Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.
    18. Alan De Genaro & Marco Avellaneda, 2018. "Pricing Interest Rate Derivatives Under Monetary Changes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-28, September.
    19. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    20. Leippold, Markus & Strømberg, Jacob, 2014. "Time-changed Lévy LIBOR market model: Pricing and joint estimation of the cap surface and swaption cube," Journal of Financial Economics, Elsevier, vol. 111(1), pages 224-250.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.00864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.