Advanced Search
MyIDEAS: Login

Stochastic Modeling and Fair Valuation of Drawdown Insurance

Contents:

Author Info

  • Hongzhong Zhang
  • Tim Leung
  • Olympia Hadjiliadis

Abstract

This paper studies the stochastic modeling of market drawdown events and the fair valuation of insurance contracts based on drawdowns. We model the asset drawdown process as the current relative distance from the historical maximum of the asset value. We first consider a vanilla insurance contract whereby the protection buyer pays a constant premium over time to insure against a drawdown of a pre-specified level. This leads to the analysis of the conditional Laplace transform of the drawdown time, which will serve as the building block for drawdown insurance with early cancellation or drawup contingency. For the cancellable drawdown insurance, we derive the investor's optimal cancellation timing in terms of a two-sided first passage time of the underlying drawdown process. Our model can also be applied to insure against a drawdown by a defaultable stock. We provide analytic formulas for the fair premium and illustrate the impact of default risk.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/1310.3860
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number 1310.3860.

as in new window
Length:
Date of creation: Oct 2013
Date of revision:
Handle: RePEc:arx:papers:1310.3860

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Vadim Linetsky, 2006. "Pricing Equity Derivatives Subject To Bankruptcy," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 255-282.
  2. William N. Goetzmann & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2001. "High-Water Marks and Hedge Fund Management Contracts," Yale School of Management Working Papers ysm186, Yale School of Management.
  3. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
  4. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
  5. Cheung, Ka Chun & Yang, Hailiang, 2005. "Optimal stopping behavior of equity-linked investment products with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 599-614, December.
  6. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
  7. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276.
  8. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.
  9. Vikas Agarwal & Naveen D. Daniel & Narayan Y. Naik, 2009. "Role of Managerial Incentives and Discretion in Hedge Fund Performance," Journal of Finance, American Finance Association, vol. 64(5), pages 2221-2256, October.
  10. Johansen, Anders, 2003. "Characterization of large price variations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 157-166.
  11. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
  12. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
  13. Manishi Prasad & Peter Wahlqvist & Rich Shikiar & Ya-Chen Tina Shih, 2004. "A," PharmacoEconomics, Springer Healthcare | Adis, vol. 22(4), pages 225-244.
  14. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  15. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
  16. Moore, Kristen S., 2009. "Optimal surrender strategies for equity-indexed annuity investors," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 1-18, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.3860. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.