IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i3d10.1007_s10959-018-0836-y.html
   My bibliography  Save this article

Drawdown and Drawup for Fractional Brownian Motion with Trend

Author

Listed:
  • Long Bai

    (University of Lausanne, UNIL-Dorigny)

  • Peng Liu

    (University of Lausanne, UNIL-Dorigny)

Abstract

We consider the drawdown and drawup of a fractional Brownian motion with trend, which corresponds to the logarithm of geometric fractional Brownian motion representing the stock price in a financial market. We derive the asymptotics of tail probabilities of the maximum drawdown and maximum drawup, respectively, as the threshold goes to infinity. It turns out that the extremes of drawdown lead to new scenarios of asymptotics depending on the Hurst index of fractional Brownian motion.

Suggested Citation

  • Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:3:d:10.1007_s10959-018-0836-y
    DOI: 10.1007/s10959-018-0836-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0836-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0836-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    2. Jessica James & Louis Yang, 2010. "Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 1-12.
    3. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    4. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
    5. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    6. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    7. Dieker, A.B., 2005. "Extremes of Gaussian processes over an infinite horizon," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 207-248, February.
    8. Long Bai & Krzysztof Dȩbicki & Enkelejd Hashorva & Li Luo, 2018. "On Generalised Piterbarg Constants," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 137-164, March.
    9. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    10. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    11. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    12. Baurdoux, Erik J. & Palmowski, Z & Pistorius, Martijn R, 2017. "On future drawdowns of Lévy processes," LSE Research Online Documents on Economics 84342, London School of Economics and Political Science, LSE Library.
    13. Vladimir Cherny & Jan Obloj, 2011. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Papers 1110.6289, arXiv.org, revised Apr 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    2. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    4. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    5. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    6. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    7. David Landriault & Bin Li & Hongzhong Zhang, 2017. "A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes," Papers 1702.07786, arXiv.org.
    8. Baurdoux, Erik J. & Palmowski, Z & Pistorius, Martijn R, 2017. "On future drawdowns of Lévy processes," LSE Research Online Documents on Economics 84342, London School of Economics and Political Science, LSE Library.
    9. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    10. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    11. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    12. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    13. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    14. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    15. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    16. Paolo Guasoni & Jan Obłój, 2016. "The Incentives Of Hedge Fund Fees And High-Water Marks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 269-295, April.
    17. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    18. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    19. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    20. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:3:d:10.1007_s10959-018-0836-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.