Advanced Search
MyIDEAS: Login to save this paper or follow this series

Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation

Contents:

Author Info

  • Salvatore Federico
  • Paul Gassiat
  • Fausto Gozzi

Abstract

We consider a utility maximization problem for an investment-consumption portfolio when the current utility depends also on the wealth process. Such kind of problems arise, e.g., in portfolio optimization with random horizon or with random trading times. To overcome the difficulties of the problem we use the dual approach. We define a dual problem and treat it by means of dynamic programming, showing that the viscosity solutions of the associated Hamilton-Jacobi-Bellman equation belong to a suitable class of smooth functions. This allows to define a smooth solution of the primal Hamilton-Jacobi-Bellman equation, proving that this solution is indeed unique in a suitable class and coincides with the value function of the primal problem. Some financial applications of the results are provided.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/1301.0280
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number 1301.0280.

as in new window
Length:
Date of creation: Jan 2013
Date of revision:
Handle: RePEc:arx:papers:1301.0280

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2012. "Impact of time illiquidity in a mixed market without full observation," Papers 1211.1285, arXiv.org.
  2. Eduardo S. Schwartz & Claudio Tebaldi, 2006. "Illiquid Assets and Optimal Portfolio Choice," NBER Working Papers 12633, National Bureau of Economic Research, Inc.
  3. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
  4. Bruno Bouchard & Huyên Pham, 2004. "Wealth-path dependent utility maximization in incomplete markets," Finance and Stochastics, Springer, vol. 8(4), pages 579-603, November.
  5. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
  6. Bouchard, Bruno & Pham, Huyen, 2004. "Wealth-Path Dependent Utility Maximization in Incomplete Markets," Economics Papers from University Paris Dauphine 123456789/1803, Paris Dauphine University.
  7. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi & Elena Vigna, 2010. "Constrained portfolio choices in the decumulation phase of a pension plan," Carlo Alberto Notebooks 155, Collegio Carlo Alberto.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.0280. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.