Advanced Search
MyIDEAS: Login to save this paper or follow this series

Incorporating fat tails in financial models using entropic divergence measures

Contents:

Author Info

  • Santanu Dey
  • Sandeep Juneja
Registered author(s):

    Abstract

    In the existing financial literature, entropy based ideas have been proposed in portfolio optimization, in model calibration for options pricing as well as in ascertaining a pricing measure in incomplete markets. The abstracted problem corresponds to finding a probability measure that minimizes the relative entropy (also called $I$-divergence) with respect to a known measure while it satisfies certain moment constraints on functions of underlying assets. In this paper, we show that under $I$-divergence, the optimal solution may not exist when the underlying assets have fat tailed distributions, ubiquitous in financial practice. We note that this drawback may be corrected if `polynomial-divergence' is used. This divergence can be seen to be equivalent to the well known (relative) Tsallis or (relative) Renyi entropy. We discuss existence and uniqueness issues related to this new optimization problem as well as the nature of the optimal solution under different objectives. We also identify the optimal solution structure under $I$-divergence as well as polynomial-divergence when the associated constraints include those on marginal distribution of functions of underlying assets. These results are applied to a simple problem of model calibration to options prices as well as to portfolio modeling in Markowitz framework, where we note that a reasonable view that a particular portfolio of assets has heavy tailed losses may lead to fatter and more reasonable tail distributions of all assets.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1203.0643
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1203.0643.

    as in new window
    Length:
    Date of creation: Mar 2012
    Date of revision:
    Handle: RePEc:arx:papers:1203.0643

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, Cambridge University Press, vol. 31(01), pages 143-159, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.0643. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.