Advanced Search
MyIDEAS: Login

Quasi self-dual exponential L\'evy processes

Contents:

Author Info

  • Thorsten Rheinl\"ander
  • Michael Schmutz
Registered author(s):

    Abstract

    The important application of semi-static hedging in financial markets naturally leads to the notion of quasi self-dual processes. The focus of our study is to give new characterizations of quasi self-duality for exponential L\'evy processes such that the resulting market does not admit arbitrage opportunities. We derive a set of equivalent conditions for the stochastic logarithm of quasi self-dual martingale models and derive a further characterization of these models not depending on the L\'evy-Khintchine parametrization. Since for non-vanishing order parameter two martingale properties have to be satisfied simultaneously, there is a non-trivial relation between the order and shift parameter representing carrying costs in financial applications. This leads to an equation containing an integral term which has to be inverted in applications. We first discuss several important properties of this equation and, for some well-known models, we derive a family of closed-form inversion formulae leading to parameterizations of sets of possible combinations in the corresponding parameter spaces of well-known L\'evy driven models.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1201.5132
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1201.5132.

    as in new window
    Length:
    Date of creation: Jan 2012
    Date of revision:
    Handle: RePEc:arx:papers:1201.5132

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Tehranchi, Michael R., 2009. "Symmetric martingales and symmetric smiles," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3785-3797, October.
    2. Ernst Eberlein & Antonis Papapantoleon & Albert N. Shiryaev, 2008. "Esscher transform and the duality principle for multidimensional semimartingales," Papers 0809.0301, arXiv.org, revised Nov 2009.
    3. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    4. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    5. Ernst Eberlein & Antonis Papapantoleon & Albert Shiryaev, 2008. "On the duality principle in option pricing: semimartingale setting," Finance and Stochastics, Springer, vol. 12(2), pages 265-292, April.
    6. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    7. Fajardo, José & Mordecki, Ernesto, 2010. "Market symmetry in time-changed Brownian models," Finance Research Letters, Elsevier, vol. 7(1), pages 53-59, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.5132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.