Advanced Search
MyIDEAS: Login to save this paper or follow this series

Long-term and blow-up behaviors of exponential moments in multi-dimensional affine diffusions


Author Info

  • Rudra P. Jena
  • Kyoung-Kuk Kim
  • Hao Xing
Registered author(s):


    This paper considers multi-dimensional affine processes with continuous sample paths. By analyzing the Riccati system, which is associated with affine processes via the transform formula, we fully characterize the regions of exponents in which exponential moments of a given process do not explode at any time or explode at a given time. In these two cases, we also compute the long-term growth rate and the explosion rate for exponential moments. These results provide a handle to study implied volatility asymptotics in models where returns of stock prices are described by affine processes whose exponential moments do not have an explicit formula.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by in its series Papers with number 1010.2865.

    as in new window
    Date of creation: Oct 2010
    Date of revision: May 2012
    Handle: RePEc:arx:papers:1010.2865

    Contact details of provider:
    Web page:

    Related research


    This paper has been announced in the following NEP Reports:


    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.2865. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.