Advanced Search
MyIDEAS: Login

Existence of Shadow Prices in Finite Probability Spaces

Contents:

Author Info

  • Jan Kallsen
  • Johannes Muhle-Karbe
Registered author(s):

    Abstract

    A shadow price is a process lying within the bid/ask prices of a market with proportional transaction costs, such that maximizing expected utility from consumption in the frictionless market with this price process leads to the same maximal utility as in the original market with transaction costs. For finite probability spaces, this note provides an elementary proof for the existence of such a shadow price.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/0911.4801
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 0911.4801.

    as in new window
    Length:
    Date of creation: Nov 2009
    Date of revision: Nov 2010
    Handle: RePEc:arx:papers:0911.4801

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. repec:fth:inseep:9513 is not listed on IDEAS
    2. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
    3. Kallal, Hedi & Jouini, Elyès, 1995. "Martingales and arbitrage in securities markets with transaction costs," Economics Papers from University Paris Dauphine 123456789/5630, Paris Dauphine University.
    4. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    5. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    6. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0911.4801. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.